Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Asymptotic enumeration of Latin rectangles


Authors: C. D. Godsil and B. D. McKay
Journal: Bull. Amer. Math. Soc. 10 (1984), 91-92
MSC (1980): Primary 05A15, 05B20
DOI: https://doi.org/10.1090/S0273-0979-1984-15196-6
MathSciNet review: 722858
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. P. Erdös and I. Kaplansky, The asymptotic number of Latin rectangles, Amer. J. Math. 68 (1946), 230-236. MR 15356
  • 2. C. D. Godsil, Matchings and walks in graphs, J. Graph Theory 5 (1981), 285-297. MR 625070
  • 3. C. D. Godsil, Hermite polynomials and a duality relation for the matchings polynomial, Combinatorica 1 (1981), 257-262. MR 637830
  • 4. O. J. Heilmann and E. H. Lieb, Theory of monomer-dimer systems, Comm. Math. Phys. 25 (1972), 190-232. MR 297280
  • 5. S. A. Joni and G.-C. Rota, A vector space analog of permutations with restricted position, J. Combinatorial Theory Ser. A 29 (1980), 59-73. MR 577543
  • 6. B. D. McKay, The expected eigenvalue distribution of a large regular graph, Linear Algebra Appl. 40 (1981), 203-216. MR 629617
  • 7. C. M. Stein, Asymptotic evaluation of the number of Latin rectangles, J. Combinatorial Theory Ser. A 25 (1978), 38-49. MR 499035
  • 8. K. Yamamoto, On the asymptotic number of Latin rectangles, Japan. J. Math. 21 (1951), 113-119. MR 51203

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 05A15, 05B20

Retrieve articles in all journals with MSC (1980): 05A15, 05B20


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1984-15196-6

American Mathematical Society