A \(p \)-ADIC REGULATOR PROBLEM IN ALGEBRAIC \(K \)-THEORY
AND GROUP COHOMOLOGY

BY J. B. WAGONER

Let \(\mathcal{O} \) be the ring of integers in a number field \(F \). Let \(p \subset \mathcal{O} \) be a prime ideal and \(\mathcal{O}_p = \lim \mathcal{O}/p^n \) be the \(p \)-adic completion of \(\mathcal{O} \). Let

\[
\hat{K}_n(\mathcal{O}) = K_n(\mathcal{O}) \mod \text{torsion},
\]

\[
\hat{K}_n^c(\mathcal{O}_p) = K_n^c(\mathcal{O}_p) \mod \text{torsion},
\]

where \(K_n(\mathcal{O}) \) is the algebraic \(K \)-theory of Quillen [Q] and \(K_n^c(\mathcal{O}_p) = \lim K_n(\mathcal{O}/p^n) \) is the “continuous” or “\(p \)-adic” algebraic \(K \)-theory of \(\mathcal{O}_p \) studied in [W1] by Milgram and the author. Results of [B] and [W1] suggested asking whether

(1) \(\Phi_p : \hat{K}_n(\mathcal{O}) \to \hat{K}_n^c(\mathcal{O}_p) \)

or

(2) \(\Phi : \hat{K}_n(\mathcal{O}) \to \bigoplus_{p | p} \hat{K}_n^c(\mathcal{O}_p) \)

is injective, where \(p \) is a fixed rational prime and \(n > 1 \) is odd. Observe that each \(\Phi_p \) is clearly injective for \(n = 1 \), because \(K_1(\mathcal{O}) = \mathcal{O}^* \) and \(K_1^c(\mathcal{O}_p) = \mathcal{O}_p^* \).

A much harder problem is whether \(\Phi \otimes \mathbb{Z}_p \) is injective. For \(n = 1 \) and \(F \) totally real abelian, injectively of \(\Phi \otimes \mathbb{Z}_p \) on the subgroup of \(\mathcal{O}^* \) consisting of those elements congruent to 1 mod \(p \) for each \(p | p \) is equivalent to nonvanishing of the \(p \)-adic regulator [Br, C]. As an example of (1) let \(F \) be quadratic imaginary. Then is

(3) \(\Phi_p : \mathbb{Z} \cong \hat{K}_3(\mathcal{O}) \to \hat{K}_3^c(\mathcal{O}_p) \cong \mathbb{Z}_p \)

injective when \(p = \text{char}(\mathcal{O}/p) \) is unramified with \(\mathcal{O}_p \cong \mathbb{Z}_p \)? J.-P. Serre asked an equivalent cohomological version of (1) and (2) prior to the circa 1975 \(K \)-theory formulation. For special case (3) injectivity is equivalent to showing \(\Phi_p \otimes \mathbb{Q}_p \) is an isomorphism, which in turn amounts to showing

(4) \(Q_p \cong H^3_c(\text{SL}_n(\mathcal{O}_p); \mathbb{Q}_p) \to H^3(\text{SL}_n(\mathcal{O}); \mathbb{Q}_p) \cong Q_p \)

is an isomorphism for \(n \) large. \(H^3_c \) denotes the continuous cohomology of the \(p \)-adic group \(\text{SL}_n(\mathcal{O}_p) \) and \(H^3 \) is the Eilenberg-Mac Lane cohomology of the discrete group \(\text{SL}_n(\mathcal{O}) \). Compare [L]. Numerous examples of (4)...
result from nonvanishing of the Gross-Coleman Q_p-regulator as formulated in [Co]. This regulator connects the p-adic dilogarithm and the L-function values $L_p(2, \chi \omega^{-1})$.

There is the companion Z_p-regulator question to (3): namely, determine the index R_p of

\[\Phi_p \otimes Z_p : Z_p \approx \tilde{K}_3(\mathcal{O}) \otimes Z_p \rightarrow \tilde{K}_3^c(\mathcal{O}_p) \approx Z_p. \]

For $F = \mathbb{Q}(\sqrt{-3}) = \mathbb{Q}(\mu)$, where $\mu^3 = 1$, we give examples for which $R_p = 1$, i.e., for which $\Phi_p \otimes Z_p$ is an isomorphism. This is done with the aid of a homomorphism $\text{Ch}_p : K_3(\mathcal{O}) \rightarrow \mathbb{Z}/p$ constructed by elementary methods, and the values of Ch_p turn out to be related experimentally to the values $L_p(2, \chi \omega^{-1}) \mod p$, where χ is the Dirichlet character of conductor 3 and ω is the Teichmüller character on \mathbb{Z}^*. The details are in [W2].

Aisbett [A] has shown $K_3(\mathbb{Z}/p^n) = \mathbb{Z}/p^{2(n-1)} \oplus \mathbb{Z}/p^2 - 1$ for $p > 2$. To test for examples where (5) is an isomorphism it is sufficient to:

(a) find an explicit element $B \in K_3(\mathcal{O})$,
(b) find an explicit formula for a homomorphism $\text{Ch}_p : K_3(\mathcal{O}) \rightarrow K_3^c(\mathcal{O}_p) \rightarrow K_3(\mathbb{Z}/p^2) \rightarrow \mathbb{Z}/p$,
(c) determine $\text{Ch}_p(B) \neq 0$ in various cases by machine computation.

In the case $F = \mathbb{Q}(\sqrt{-3})$, Tate has shown $K_2(\mathcal{O}) = 0$. Hence $K_3(\mathcal{O}) = H_3(\text{St}_n(\mathcal{O})) = H_3(\text{E}_n(\mathcal{O}))$ for n large enough, where $\text{E}_n(\mathcal{O})$ is the group of $n \times n$ elementary matrices. The class $B \in H_3(\text{E}_n(\mathcal{O}))$ is represented as an explicit sum of 30 simplices in the bar resolution of $\text{E}_3(\mathcal{O})$, and the construction of B makes use of Riley’s hyperbolic representation of the fundamental group of the complement of the figure eight knot [R, M]. As a cohomology class, the homomorphism $\text{Ch}_p : K_3(\mathcal{O}) \rightarrow \mathbb{Z}/p$ comes from the diagram

\[
\begin{array}{ccc}
K_3(\mathcal{O}) & \rightarrow & K_3^c(\mathcal{O}_p) \rightarrow K_3(\mathbb{Z}/p^2) \\
\downarrow & & \downarrow \\
H_3(\text{E}(\mathcal{O})) & \rightarrow & H_3(\text{E}(\mathbb{Z}/p^2)) \approx H_3(\text{E}(\mathbb{Z}/p^2)) \rightarrow \mathbb{Z}/p
\end{array}
\]

The explicit formula for the $E(\mathbb{Z}/p^2)$ invariant cocycle ch on a three simplex $\sigma[a|b|c]$ in the bar resolution arises from examination of the standard cohomology class $\Delta \in H^2(\text{GL}_n(\mathbb{Z}/p); \text{M}_n(\mathbb{Z}/p))$ of the extension

\[0 \rightarrow \text{M}_n(\mathbb{Z}/p) \rightarrow \text{GL}_n(\mathbb{Z}/p^2) \rightarrow \text{GL}_n(\mathbb{Z}/p) \rightarrow 1. \]

The class ch is a special case of a class constructed in $H^3(\text{GL}_n(A/I^2); I^2/I^3)$ when A is semilocal with radical I such that A/I is finite.

Let $F = \mathbb{Q}(\sqrt{-3})$ and recall [Coh] that a rational prime $p > 3$ is split iff -3 is a quadratic residue mod p. In this case solve $x^2 \equiv -3 \mod p$. Then $\langle p \rangle = p\overline{p}$, where $p = \langle p, x + \sqrt{-3} \rangle$, $\overline{p} = \langle p, -x + \sqrt{-3} \rangle$, and $\mathcal{O}_p \cong \mathcal{O}_p \cong \mathbb{Z}_p$.
Theorem. In the following cases $\Phi_p \otimes \mathbb{Z}_p$ is an isomorphism because $\text{Chp}(B) \neq 0$:

<table>
<thead>
<tr>
<th>p</th>
<th>x</th>
<th>$\text{Chp}(B)$ for $p = (p, x + \sqrt{-3})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>37</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>43</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>61</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>67</td>
<td>8</td>
<td>33</td>
</tr>
<tr>
<td>73</td>
<td>17</td>
<td>19</td>
</tr>
</tbody>
</table>

In general we have $\text{Chp}(B) = -\text{Chp}(B)$ so there are nine more cases where $\text{Chp} \neq 0$. The above examples were the only one computed. To make the computation for Chp we use the isomorphism $i_p: \mathbb{O}/p^2 \rightarrow \mathbb{Z}/p^2$ arising from

$$a + b\nu \rightarrow a + b((3 + 2x - x^2)/4x) \mod p^2,$$

where $\nu = (1 + \sqrt{-3})/2$ and $a, b \in \mathbb{Z}$.

In [Co] Coleman uses the p-adic dilogarithm to define a homomorphism $D^*_p: K_3(C_p) \rightarrow C_p$, where C_p is a completion of the algebraic closure of \mathbb{Q}_p. When \mathbb{O} is the integers in the number field of mth roots of unity, he proves a regulator formula for $K_3(\mathbb{O})$ involving D^*_p and $L_p(2, \chi_\omega^{-1})$, where χ has conductor m and ω is the Teichmüller character on \mathbb{Z}_p^*. In the case $m = 3$, Theorem 8.1 of [Co] suggests, after simplification, that we should have

$$L_p(2, \chi_\omega^{-1}) \equiv -\tau_B i_p(x) \text{Chp}(B) \mod p$$

for some rational number τ_B depending only on B and having denominator prime to p. The factor τ_B occurs because we only know $B \in K_3(\mathbb{O})$ is some integer multiple of the generator. Machine computation verifies (6) holds for $\tau_B = 1/18$ in all cases of $p = (p, \pm x + \sqrt{-3})$ considered above.

It is a pleasure to acknowledge the assistance of R. Fateman, K. Sklower, and others of the Berkeley Computer Science Department as well as O. Lanford and J. Wolf in the Mathematics Department. Their help in introducing the author to Berkeley's computer facilities was invaluable in expediting this project in a timely fashion. We would also like to thank K. Ribet for stimulating discussion on L-functions.

References

C. J. Coates, On the values of the p-adic zeta functions at the odd positive integers, Notes, Univ. de Paris, Orsay.

Department of Mathematics, University of California, Berkeley, California 94720