
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 10, Number 2, April 1984 

AN ELEMENTARY INTRODUCTION 
TO THE LANGLANDS PROGRAM 

BY STEPHEN GELBART1 

TABLE OF CONTENTS 

Preface 
I. Introduction 
II. Classical Themes 

A. The Local-Global Principle 
B. Hecke's Theory and the Centrality of Automorphic Forms 
C. Artin (and Other) L-functions 
D. Group Representations in Number Theory 

III. Automorphic Representations 
A. Some Definitions 
B. Local Invariants 

IV. The Langlands Program 
A. Prehminary L-functions 
B. L-groups and the Functoriality of Automorphic Representations 
C. What's Known? 
D. Methods of Proof 
E. A Few Last Words 

Bibliography 

PREFACE 
In a recent issue of the Notices of the American Mathematical Society (April 

1983, p. 273), as part of a very brief summary of Progress in Theoretical 
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178 STEPHEN GELBART 

"The unifying role of group symmetry in geometry, so penetratingly ex
pounded by Felix Klein in his 1872 Erlanger Program, has led to a century of 
progress. A worthy successor to the Erlanger Program seems to be Langlands' 
program to use infinite dimensional representations of Lie groups to illuminate 
number theory. 

That the possible number fields of degree n are restricted in nature by the 
irreducible infinite dimensional representations of GL(«) was the visionary 
conjecture of R. P. Langlands. His far-reaching conjectures present tantaUzing 
problems whose solution will lead us to a better understanding of representa
tion theory, number theory and algebraic geometry. Impressive progress has 
already been made, but very much more Hes ahead." 

The purpose of this paper is to explain what the Langlands program is about 
—what new perspectives on number theory it affords, and what kinds of 
results it can be expected to prove. 

To begin with, Langlands' program is a synthesis of several important 
themes in classical number theory. It is also—and more significantly—a 
program for future research. This program emerged around 1967 in the form of 
a series of conjectures, and it has subsequently influenced recent research in 
number theory in much the same way the conjectures of A. Weil shaped the 
course of algebraic geometry since 1948. 

At the heart of Langlands' program is the general notion of an "automor-
phic representation" m and its L-function L(s, IT). These notions, both defined 
via group theory and the theory of harmonic analysis on so-called adele 
groups, will of course be explained in this paper. The conjectures of Langlands 
just alluded to amount (roughly) to the assertion that the other zeta-functions 
arising in number theory are but special realizations of these L(s, IT). 

Herein lies the agony as well as the ecstasy of Langlands' program. To 
merely state the conjectures correctly requires much of the machinery of class 
field theory, the structure theory of algebraic groups, the representation theory 
of real and /?-adic groups, and (at least) the language of algebraic geometry. In 
other words, though the promised rewards are great, the initiation process is 
forbidding. 

Two excellent recent introductions to Langlands' theory are [Bo and Art]. 
However, the first essentially assumes all the prerequisites just mentioned, 
while the second concentrates on links with Langlands' earlier theory of 
Eisenstein series. 

The idea of writing the present survey came to me from Professor Paul 
Halmos, and I am grateful to him for his encouragement. Although the 
finished product is not what he had in mind, my hope is that it will still make 
accessible to a wider audience the beauty and appeal of this subject; in 
particular, I shall be pleased if this paper serves as a suitable introduction to 
the surveys of Borel and Arthur. 

One final remark: This paper is not addressed to the experts. Readers who 
wish to find additional information on such topics as the trace formula, 
0-series, L-indistinguishability, zeta-functions of varieties, etc., are referred to 
the (annotated) bibliography appearing after Part IV. I am indebted to Martin 
Karel and Paul Sally for their help in seeing this paper through to its 
publication. 
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I. INTRODUCTION 
In this article I shall describe Langlands' theory in terms of the classical 

works which anticipated, as well as motivated, it. Examples are the local-global 
methods used in solving polynomial equations in integers, especially "Hasse's 
principle" for quadratic forms; the use of classical automorphic forms and 
zeta-functions to study integers in algebraic number fields; and the use of 
groups and their representations to bridge the gap between analytic and 
algebraic problems. Thus, more than one half of this survey will be devoted to 
material which is quite well known, though perhaps never before presented 
purely as a vehicle for introducing Langlands' program. 

To give some idea of the depth and breadth of Langlands' program, let me 
leisurely describe one particular conjecture of Langlands; the rest of this paper 
will be devoted to adding flesh (and pretty clothes) to this skeletal sketch (as 
well as defining all the terms alluded to in this Introduction!). 

In algebraic number theory, a fundamental problem is to describe how an 
ordinary prime/? factors into "primes" in the ring of "integers" of an arbitrary 
finite extension E of Q. Recall that the ring of integers OE consists of those x 
in E which satisfy a monic polynomial with coefficients in Z. Though 0E need 
not have unique factorization in the classical sense, every ideal of OE must 
factor uniquely into prime ideals (the "primes" of 0E). Thus, in particular, 

(•) poE=m> 
with each 9t a prime ideal of 0E, and the collection {̂ PJ completely de
termined by/?. 

Now suppose, in addition, that E is Galois over Q, with Galois group 
G = Gal(£/Q). This means that E is the splitting field of some monic 
polynomial in Q[x], and G is the group of field automorphisms of E fixing Q 
pointwise. According to a well-known theorem, each element of G moves 
around the primes 9t "dividing" /?, and G acts transitively on this set. Thus the 
"splitting type" of p in 0E is completely determined by the size of the 
subgroup of G which fixes any % i.e., by the size of the "isotropy groups" Gt 

(which are conjugate in G). 
For simplicity, we shall now assume that the primes ^ in (*) are distinct, i.e., 

the prime p is unramified in E. In this case, the afore-mentioned isotropy 
groups are cyclic. To obtain information about the factorization of such /?, 
attention is focused on the so-called Frobenius element Fr̂ , of G, the canonical 
generator of the subgroup of G which maps any 9. into itself. (We shall discuss 
all these matters in more detail in II.C.2.) To be sure, F% is an automorphism 
of E over Q determined only up to conjugacy in G. Nevertheless, the resulting 
conjugacy class {Frp} completely determines the factorization type of (*). For 
example, when {Fr^} is the class of the identity alone, then (and only then) p 
splits completely in E, i.e., p factors into the maximum number of primes in 0E 

(namely r = [E:Q]= #G). 
In general, one seeks to describe {Fvp} (and hence the factorization of p in 

E) intrinsically in terms of/? and the arithmetic of Q. To see what this means, 
consider the example 

E = Q(i) = {a + / ? i :a , j8eQ} , 
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with OE = Z(/) = {n + mi: n, m G Z}. In this case, G = Gal(£/Q) = 
{ƒ, complex conjugation}, and some elementary algebra shows that 

_ ƒ / i f -1 is a quadratic residue mod p, 
p \ conjugation otherwise. 

For convenience, let us identify Ga\(E/Q) with the subgroup ( ± 1} of C* via 
the obvious isomorphism a: G -+ { ± 1}. Then we have 

o(Fr,) = (-l/p), 

with (-l/p) the Legendre symbol (equal to 1 or -1 according to whether -1 is, 
or is not, a quadratic residue mod p). To express this condition in terms of a 
congruence condition on p instead of on - 1 , we appeal to a part of the 
quadratic reciprocity law for Q which states that (for odd /?, precisely those p 
unramified in Q(/)) 

( - l / / , ) = ( - l ) ° ' - , ) / 2 , i-e., o(Frp) = ( - l ) ( - ' > / 2 . 

This is the type of intrinsic description of Fr^ we sought; from it, and the 
fact that 

( - l ) ( ' - I ) / 2 = l ~ | , s l ( 4 ) , 

we conclude that the factorization of p in Z(i) depends only on its residue 
modulo 4. In particular, all primes in a given arithmetic progression mod 4 
have the same factorization type in Z(i). Moreover, since all the prime ideals 
of Z(/) are principal, and of the form (n) or (n + im), we obtain the following: 

THEOREM (FERMÂT 1640, EULER 1754). Suppose p is an odd prime. Then p 
can be written as the sum of two squares n2 + m2 if and only if p = 1 (4). 

PROOF, p = n2 + m2 = (n + im)(n — im) if and only if/? splits completely 
in Z(/). 

A major goal of class field theory is to give a similar description of {Fr^} for 
arbitrary Galois extensions E. However, this goal is far from achieved and, in 
general, is probably impossible. 

In general, we cannot expect there to be a modulus N such that {Fr^} = {/} 
if and only if p lies in some arithmetic progression mod N. However, if E is 
abelian, i.e., G = Gal(£/Q) is abelian, then a great deal can be said. Indeed, 
suppose E is such an extension, and a: G -> Cx is a homomorphism. Then it is 
known that there exists an integer Na> 0 and a Dirichlet character 

Xo: (Z/NZ)X ^ C' such that o(Frp) = Xo(p) 

for all primes p (unramified in E). This is E. Artin's famous and fundamental 
reciprocity law of abelian class field theory.2 It implies—just as in the special 
case E — Q(z)—that the splitting properties of p in E depend only on its 

2 The more familiar form of this law directly identifies Gal(£/Q) with the idele class group of Q 
modulo the "norms from £"'; we stress the "dual form" of this assertion only because its 
formulation seems more amenable to generalization (i.e., nonabelian E). 
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residue modulo some fixed modulus N (depending on E). To see how this result 
directly generalizes the classical result of Fermât and Euler, we note that when 
E = Q(0 and a: G -> { ± 1} is as before, 

a(F*P)=Xo(p)> 

with X: (Z/4Z)* - C* defined as follows: 

X0(n) = (-lYn-l)/2. 

For more general abelian extensions, Artin's theorem not only implies the 
general quadratic reciprocity law (in place of the supplementary rule (-l/p) = 
(_!)(/>-1)/2) but also the so-called higher reciprocity laws of abelian class field 
theory. For a discussion of such matters, see, for example, [Goldstein, Tate, or 
Mazur]. 

The question remains: for non abelian Galois extensions, how can the family 
{Fr^} be described in terms of the ground field Q? 

Recognizing the utility of studying groups in terms of their matrix represen
tations, Artin focused attention on homomorphisms of the form a: Gal(£/Q) 
-> GLW(C), i.e., on n-dimensional representations of the Galois group G. In this 
way he was able to transfer the problem of analyzing certain conjugacy 
classes in G to an analogous problem inside GLW(Q (where such classes as 
{o(Frp)} are completely determined by their characteristic polynomials 
det[/„ — o(Frp)p~s]). By also introducing the (Artin) L-functions 

L(s,o) = R(det[ln-o(Ftp)p-*]y' 
P 

(whose exact definition will be given in II.C.2), Artin was further able to 
reduce this problem to one involving the analytic objects L(s, a). 

Problem. Can the L-functions L(s, a) be defined in terms of the arithmetic 
of Q alone? 

It was in the context of this problem that Artin proved his fundamental 
reciprocity law. Indeed, for abelian E over Q, and one-dimensional a, Artin 
proved that his L(s, a) is identical to a Dirichlet L-series 

L(s,x) = u^-x(p)p-rl 

for an appropriate choice of character x: (Z/NZ)X -> C*. 
For arbitrary E and a, Artin was able to derive important analytic properties 

of L(s9 a). However, what he was unable to do was discover the appropriate 
"«-dimensional" analogues of Dirichlet's characters and L-functions. Although 
some such 2-dimensional "automorphic" L-functions were being studied nearby 
(and concurrently) by Hecke, it remained for Langlands (40 years later) to see 
the connection and map out some general conjectures. 

Roughly speaking, here is what Langlands did. He isolated the notion of an 
"automorphic representation of the group GL„ over the adeles of Q" as the 
appropriate generalization of a Dirichlet character. Furthermore, he associated 
L-functions with these automorphic representations, generalizing Dirichlet's 
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L-functions in the case n = 1. Finally, he conjectured that each «-dimensional 
Artin L-function L(s9 a) is exactly the L-function L(s, ira) for an appropriate 
automorphic representation ira of GLn. This is discussed—with an arbitrary 
number field F in place of Q—in Part IV of the present paper; cf. Conjecture 
1 in IV.A. 

The (conjectured) correspondence a -» ira is to be regarded as a far reaching 
generalization of Artin's reciprocity map o -> x0* I*1 c a s e n = 2, when ira 

corresponds to a classical automorphic form f(z) in the sense of Hecke (see 
LB), the map o -* ira affords an interpretation of the classes {Fr^} in terms of 
certain conjugacy classes in GL2(C) determined by the Fourier coefficients of 
the form f(z). In general, the proper formulation of this conjecture (and other 
conjectures of Langlands) requires a synthesis and further development of all 
the themes alluded to heretofore: local-global principles, automorphic forms, 
group representations, etc. 

In Part II of this paper, I motivate the use of/?-adic numbers and adeles and 
survey Hecke's theory of automorphic forms, the /.-functions of Artin and 
Hecke, and the use of group representations in number theory. Perforce, this 
brings us to the theory of infinite-dimensional representations of real and/?-adic 
groups. 

In Part III these "classical" themes and ingredients are mixed together to 
produce the all-important notion of an "automorphic representation of GLn 

over Q". Finally, in Part IV, I survey the high points of Langlands' general 
program, with an emphasis on its historical perspective, and a brief description 
of techniques and known results. 

II. CLASSICAL THEMES 
A. The local-global principle. One of the major preoccupations of number 

theory in general has been finding integer solutions of polynomial equations of 
the form 

(1) P(xl9x2,...,xH) = 0. 

For convenience, let us assume that P is actually a homogeneous polynomial, 
and let us agree that only nonzero solutions are of interest. The difficulty in 
solving (1) is illustrated by Fermat's famous unproved assertion that the 
particular equation 

has no nontrivial solutions in integers for n > 2. Indeed, much of the develop
ment of the theory of algebraic numbers is linked to attempts by people 
contemporary with Kummer to solve this problem. 

On the other hand, a question which is more easily decided is the existence 
of integral solutions "modulo m". Clearly a necessary condition that integer 
solutions of (1) exist is that the congruence 

(2) P(xl9...9xn)=0 (modm) 

be solvable for every value of the modulus m. This observation leads naturally 
to the "local methods" we shall now explain. 
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Suppose m = NM with N and M relatively prime. By the Chinese Re
mainder Theorem, (2) has a solution if and only if the similar congruences for 
N and M do. In other words, to solve (2) it is sufficient to solve congruences 
modulo pk for any prime p and all positive integers k. 

Whenever we focus on a fixed prime/?, we say we are working "locally". So 
suppose we fix a prime/? and ask whether the congruence 

(3) /> (* ! , . . . , x j SE O (mod/**) 

has a solution for all natural numbers k. It was Hensel who reformulated this 
question in a formal, yet significant, way in 1897. For each prime p he 
introduced a new field of numbers—the "/?-adic numbers"—and he showed 
that the solvability of (3) for all k is equivalent to the solvability of (1) in the 
/7-adic numbers. Thus the solvability of the congruence (2) for all n is 
equivalent to the solvability of (1) in the/7-adic numbers for all/?. 

Let us return now to the original problem of solving (1) in ordinary integers. 
In addition to being able to solve (2) modulo all integers m, it is also clearly 
necessary to be able to find real solutions for (1). The question of when these 
obviously necessary conditions are also sufficient is much more difficult, since 
the assertion that "an equation is solvable if and only if it is solvable modulo 
any integer and has real solutions" is in general false, or at least not known. 
For example, the Fermât equation has been known to be solvable /7-adically 
for all/? since around 1909. 

On the other hand, there are important instances where this "local-global 
principle" is known to work. 

THEOREM (HASSE-MINKOWSKI). Suppose 

Q(xl9...,xH)= Î atjXtXj 

is a quadratic form with atj in Z and det(a/y) ¥" 0. Then Q(xx,... ,xn) = 0 has a 
nontrivial integer solution if and only if it has a real solution and a p-adic solution 
for each p. 

In order to give a more symmetric form to this example of the local-global 
principle, let me recall how the /7-adic numbers can be constructed analogously 
to the real numbers. Fixing a prime /?, we can express any fraction x in the 
form pan/m, with n and m relatively prime to each other and to /?. Then an 
absolute value is defined on Q by 

\x\p=P~a, 

and the field of /7-adic numbers is just the completion of Q with respect to this 
metric | jp. Note that the integer a (called the /7-adic order of JC) can be 
negative, and the integers that are close to zero "/7-adically" are precisely the 
ones that are highly divisible by p. Though perhaps jarring at first, this /7-adic 
notion of size is entirely natural given our earlier motivations: the congruence 
n = 0 (/?*), with k large, translates into the statement that n is close to zero 
(/7-adically). 
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Because R is the completion of Q with respect to the usual absolute value 
| | , it is customary to write 1*1^ for | x | , Q^ for R, and then call R the 
completion of Q at "the infinite prime" oo. The result is a family of locally 
compact complete topological fields Q^ which contain Q, one for each/? < oo. 
Each Qp is called a "local field", and Q itself is called a "global field". With 
this terminology the Hasse-Minkowski theorem takes the following symmetric 
form: a quadratic form over Q has a global solution if and only if it has a local 
solution for each prime p. 

For the purposes of this article, the significance of the local-global principle is 
this: global problems should be analyzed purely locally, and with equal attention 
paid to each of the local "places " Q . 

Note. For a leisurely discussion of /?-adic numbers, and instances of the 
local-global principle, the reader is urged to browse through the Introduction 
to [BoShaf and Cassels]. Also highly recommended is the expository article 
[Rob 2]. 

B. Hecke theory and the centraliry of automorphic forms. In the 19th century 
the arithmetic significance of automorphic forms was clearly recognized, and 
examples of such forms were used to great effect in number theory. 

Around 1830, Jacobi worked with the classical theta-function 0(z) in order 
to obtain exact formulas for the representation numbers of n as a sum of r 
squares. Then 30 years later, Riemann exploited this same function in order to 
derive the analytic continuation and functional equation of his famous zeta-
function f (s). 

Before explaining these matters in more detail, let us briefly recall the 
classical notion of an automorphic form. 

1. Basic notions. Let H denote the upper half-plane in C, and regard the 
group 

>"»={[: SL.(»)=II" j : a, b, c, d real, ad — be = 1 

as the group of fractional linear transformations of H. An automorphic form 
of weight A: is a function f{z) which is holomorphic in H and "almost" 
invariant for the transformations y — [a

c%\ in some discrete subgroup T of 
SL2(R), i.e., 

<•> /(f^H»+•"*'<*> 
for all y = [a

c
b

d] in V. 
The most famous example of an automorphic form is the classical theta-

function 

0{z) = 2 e™2* = 1 + 2 2e7ri"2 

« = - 0 0 « = 1 
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This is an automorphic form of weight ^ for the group 

r ( 2 ) = { [ c j ] = S L 2 ( Z ) : 6 , c = 0(2), a,d=l(2)]; 

moreover, 

0(-\/z) = (-iz)l/26(z). 

More generally, let Qr(xl9... 9xr) denote the quadratic form 2/= 1 xf9 and set 

( « , , . . . , H r ) 

the sum extending over all "integral" vectors (nl9...9nr). Then dr(z) is again 
an automorphic form, this time of weight r/2. This example has special 
number theoretic significance because the coefficients in the Fourier expansion 
of this periodic function are the representation numbers of the quadratic form 
Qr. Indeed, if r(n9 Qr) denotes the number of distinct ways of expressing n as 
the sum of r squares, then 

er(z) = 0(z)r= i r ( » , Ô ) e " " . 
n = 0 

Here are some more examples of automorphic forms: 
(i) Let A(z) denote the function defined in H by 

00 00 

A(z) - e2wiz U U " e2"inzf4 = 2 r(n)e2winz. 
n=\ n=\ 

It is an automorphic form of weight 12 for the full modular group T — SL2(Z), 
and its Fourier coefficients r(n)—carefully investigated by Ramanujan in 1916 
—are closely related to the classical partition functionp(n). 

(ii) For k > 1 the function 

(c,d)=^(0,0) (cz 4- d) 
i n Z 2 

is called the (normalized) Eisenstein series of weight 2k. It is again an 
automorphic form with respect to the full modular group SL2(Z), this time 
with Fourier expansion 

(-WkAk °° 
^*(0 = l+i-y-^2«2fc-.(»)e2"-*, 

^ n= 1 

with Bk the so-called nth Bernoulli number, and or(n) = 2 ^ dr. 
From these few examples, it is already clearly indicated that automorphic 

forms comprise an integral part of number theory. Indeed, invariance of the 
form with respect to translations of the type z -> z + h implies the existence of 
a Fourier expansion '2ane

2'rrikz/h
9 with the an of number-theoretic significance. 

In general, the automorphy property (1) implies f(z) is determined by its 
values on a "fundamental domain" D for the action of T in H. More precisely, 
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D is a subset of H such that every orbit of T (with respect to the action 
z -» (az + &)/(cz + d)) has exactly one representative in D. For example, for 
T = SL2(Z), the fundamental domain D looks like this: 

Note that any other fundamental domain must be obtained by applying to this 
D some [£ J] in T. In particular, the domain D~l pictured above is precisely the 
image of D by the "inversion" element [_?J], t n e point "at infinity" for D 
being mapped to the "cusp" at 0 in (the boundary of) the fundamental domain 
D-\ 

To be able to apply convenient methods of analysis to the study of 
automorphic forms, it is customary to impose additional technical restrictions 
on the regularity of ƒ at "cusps" along the boundary of a fundamental domain, 
especially "at infinity". This implies in particular that f(z) always has a 
Fourier expansion of the form 

(2) f(z) = 2 aS«"'\ 
n = 0 

For example, for A(z) or E2k(z) we can take h = 1, but for 0(z), which is an 
automorphic form only on T(2) (which does not contain the translation 
z -> z + 1), the period is no longer 1, and we must take h — 2. 

Let us denote by Mk(T) the vector space of automorphic forms of weight k 
for T which are "regular at the cusps" of T, and by 5̂ (1") the subspace off(z) 
in Mk(T) which actually vanish at the cusps. Functions in this latter space are 
called cusp forms; for such functions (like the "modular discriminant" A(z)), 
the constant term a0 in the expansion (2) is zero. 

We have already remarked that automorphic forms in general have number-
theoretic interest because their Fourier coefficients involve solution numbers of 
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number-theoretic problems. For example, by relating 04(z) to certain Eisen-
stein series on T(2), we obtain Jacobi's remarkable formula 

d\n 

Thus the need for analyzing this space Mk(T) is clearly indicated. 
As we shall soon see, the subsequent theory developed by Hecke was so 

successful that it suggested new ways to look at automorphic forms in number 
theory as well as immediately providing the tools to solve existing classical 
problems. 

2. Hecke's theory. Hecke's key idea was to characterize the properties of an 
automorphic form in terms of a corresponding Dirichlet series. The most 
famous Dirichlet series around is, of course, Riemann's zeta-function 

«*)= 1 i= n (i-p-rl. 
p<cc 

So let us first sketch Riemann's original analysis of Ç(s) which Hecke so 
brilliantly generalized. 

Recall the gamma function identity, 

,dt 

valid for Re(s) > 0. (In modern parlance, we say that T(s) is the Mellin 
transform of e"' at s.) With this identity, we derive the relation 

w"T(s)S(2s) = f Hit) - 1 « * 
' 0 

with 6 the classical theta-function already encountered. In other words, Ç(2s) is 
essentially the Mellin transform of 6{it). From this fact, it is a simple matter to 
derive the desired analytic properties of f(j) in terms of the automorphic 
properties of 0(z), and conversely! Here are the key steps: 

-L-\' + -( 
2 s |o 2 J0 

dt 

1 °-l0(it)dt 

(using the change of variable t -* \/t) 

jusing the automorphy property 01 - ) = tl/2$(it)\. 
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Note that invariance with respect to the substitution s -> \ — s is already 
obvious. To reverse the process and derive the "functional equation", i.e., 
automorphy condition of 0(z) from that of f(s), we require "Mellin inversion": 

By generahzing this proof, Hecke was able to "explain" the symmetry of a 
large number of Dirichlet series and also pave the way towards finding 
automorphic forms seemingly everywhere in number theory. 

Given a sequence of complex numbers a0, ax,...,an,... with an — 0(nc) for 
some c > 0, and given h > 0, k > 0, C = ± 1, consider the series 

•(*) = i 5 
n=\ n 

and 

*(*) = (2»/xrr(*)*(j), 
and the function defined in H by 

n = 0 

THEOREM 1 (HECKE). The following two conditions are equivalent: 
(A) O(^) + a0/s + C/(k — s) is entire, bounded in every vertical strip, and 

satisfies the functional equation ®(k — s) = C<!>(s); 
(B)f(-\/z) = C(z/i)kf(z). 
In other words, the holomorphic function/(z) is automorphic of weight k 

(for the group of transformations generated by z -> z + h and z -> -l/z) if 
and only if its associated Dirichlet series *Zan/n

s is "nice". (We shall often use 
the term "nice" to describe a Dirichlet series satisfying certain analytic 
properties similar to f(s).) 

The second part of Hecke's theory answers the question: when does <j>(s) = 
2an/n

s have an Euler product expansion of the form <j>(s) — Up<O0Lp(s), with 
Lp(s) a power series in/?-5? A formal computation shows that </>(s) factors as 

11 2u ms 
pprime m X ) P 

whenever the coefficients an are multiplicative, i.e., anm — anam if n and m are 
relatively prime. 

Characterizing such multiplicativity is crucial. Indeed, since the coefficients 
an always have number-theoretic significance, it is of great interest to know 
when knowledge of these an

9s can be reduced to knowing ap for/? prime. 
Note that when the an

9s are completely multiplicative, i.e., anm — anam for all 
n and m, the Euler product expansion above reduces to the familiar expression 

(3) 25=no-«,/»-')"'• 
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Such is, of course, the case for the Riemann zeta-function 

^ ) = 2^7=n(i-Jp-sr1 

where the Euler product expansion (discovered appropriately by Euler) is 
tantamount to the fundamental theorem of arithmetic. Another example is 
provided by the coefficients an — x(n) w* tn X a "character of the integers 
modulo some N", i.e., x *s completely multiplicative, of period N, and 
x(0) = 0; such a character is called a "Dirichlet character" mod N, and the 
corresponding series 

2^=22$ i=n(i-x(^-)-1 

is a "Dirichlet L-series". 
In both these examples, the Euler factors Lp(s) are of degree 1 in p~s. In 

general, such an expansion as (2) is too much to ask for; usually we ask for 
only ordinary multiplicativity, and then the factors Lp(s) turn out to be of the 
second (not first) degree in/7"5. 

Hecke's contribution was to characterize the multiplicativity of the an (or 
<t>(s)) intrinsically (and even "locally") in terms of f(z) by introducing a 
certain ring of "Hecke operators" T(p) defined in a space of automorphic 
forms of fixed weight. 

THEOREM 2 (HECKE). Assume, for convenience, that 

ƒ(*) = i <*S2"" 

belongs to 5A:(SL2(Z)) and ax = 1. Then the an's are multiplicative (and<f>(s) has 
an Euler product expansion) if and only if f is an eigenfunction f or all the Hecke 
operators T(p), with T(p)f= apf. In this case, 

*(')=nw 
with 

Lp(s) = (l - app-+ pk-l-*>y\ 

EXAMPLE. Since 5,
12(SL2(Z)) is one dimensional, and T(p) preserves this 

space, the condition T(p)A = \pA is automatic. Thus one obtains the multi
plicativity of the coefficients r(n) (conjectured by Ramanujan and first proved 
by L. J. Mordell). 

REMARKS. (1) Hecke's Theorem 1 really says that an automorphic eigenform 
of weight k on SL2(Z) is indistinguishable from an Euler product of degree 2 
with prescribed analytic behavior (and functional equation involving the 
substitution s -> k — s). This observation sheds a new light on the theory of 
automorphic forms, since there are many number-theoretical situations where 
data {an} leads to a nice L-function, hence by Hecke to an automorphic form. 
Following up on this idea, A. Weil in 1967 completed Hecke's theory by 
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similarly characterizing automorphic forms not just on SL2(Z), but also on the 
so-called congruence subgroups such as 

r ° ( " ) = { [ c j ] e S L 2 ( Z ) : c = o} . 

(These subgroups have in general many generators, whereas Hecke's theorem 
deals with automorphic forms only for the groups generated by z -» z + X and 
z -* -1/z.) 

In this way, Weil was led to an extremely interesting conjecture. By carefully 
analyzing the zeta-function attached to an elliptic curve E over Q (with 
Lp(s) — (1 — app~s + p]~2s)~\ and 1 + p — ap the number of points on the 
"reduced curve modulo/?"), Weil was able to conjecture that such a zeta-func
tion is the Dirichlet series attached to an automorphic form in some S2(T0(N)); 
cf. [Wel]. In other words, the study of these curves might (perversely) be 
regarded as a special chapter in the theory of automorphic forms! 

(2) Perhaps it is now clear to the reader that an automorphic form/(z) (like 
an elliptic curve or a quadratic form) should be regarded as a "global object" 
over Q, and that the ap (or the Euler factors Lp(s)) comprise local data for ƒ in 
much the same way that /*-adic solutions comprise local data for rational (i.e. 
"global") solutions of Diophantine equations. This turns out to be the case, 
but must remain a fuzzy notion until the language of automorphic representa
tions is introduced in Part III. 

Note. Two excellent sources on Hecke theory, which we have followed 
closely, are [Ogg and Rob 3]. 

C. Artin (and other) L-functions. Around 1840, Dirichlet succeeded in 
proving the existence of infinitely many primes in an arithmetic progression by 
replacing (Euler's) analysis of the series 21/«5 by his own analysis of the 
"Dirichlet L-functions" L(s, x)= 2x(w)/«5- Soon afterwards, Riemann 
focused on such Dirichlet series as functions of a complex variable, thereby 
inspiring a spate of applications of Dirichlet series to number theory in 
general, and the theory of prime numbers in particular. Finally, in 1870, 
Dedekind introduced a new kind of zeta-function to study the integers in an 
arbitrary number field E, i.e., any finite extension of Q. This kind of zeta-func
tion, now called a Dedekind zeta-function and denoted $E(s)9 made it possible 
to relate the primes of Q to those of E and to analyze the distribution of 
primes within E alone. 

Despite this widespread use of "L-series" in the nineteenth century, and the 
concomitant need to generalize these functions further, a full understanding of 
the arithmetic significance of L-functions awaited twentieth century develop
ments. 

1. Abelian L-functions. In 1916, Hecke was able to establish the analytic 
continuation and functional equation of Dirichlet's L-functions and to gener
alize them to the setting of an arbitrary number field. To describe Hecke's 
achievement properly, we must first recall how to generalize the family of 
/>-adic fields Q^ considered in II.A. 

Fix a finite extension E of Q and let OE denote the ring of integers of E. By 
a finite "place" or prime v of E we understand a prime ideal 9 in OE (and we 
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often confuse the notations v and 9)\ by a "fractional ideal" of 0E we 
understand an O^-submodule of E with the property that x% C 0E for some 
x G Ex. It is a basic fact that the prime ideals are invertible (in the sense that 
9 • 9~l = 0£ for some fractional ideal P̂"1) and that every fractional ideal 
factors (uniquely) into powers of prime ideals. 

Now if x is in Ex, we define ordg>(jc) to be the (positive or negative) power 
of 9 appearing in the factorization of the principal ideal (JC), and we set 

\x\v=\x\$ = N9-OTd^x\ 

with N9 the cardinality of the field 0E/9. By analogy with the case of Q, we 
also define a "real" place v of E to be a norm | x ^ =\a(x) |, with a : £ - ^ R a 
real embedding. ("Complex" infinite places are defined analogously.) The 
result is a family of completions Ev of E9 one for each prime (or place) v of E. 
Following the lead of the local-global principle for Q, we treat all these 
"finite" or "infinite" places equally. 

Recall that a classical Dirichlet character is just a homomorphism of 
(Z/NZ)X into Cx "extended" to Z by composition with the natural homomor
phism Z -* Z/NZ (and with the convention that x(«) = 0 if («, N) > 1). The 
appropriate generalization of such a character to the number field E is called a 
Hecke character (or grossencharacter) x- This is a family of homomorphisms 
X„: Ex -> Cx, one for every place v of is, such that for any x in Ex (regarded as 
embedded in each Ex),]làS[vxv(x) = 1. I.e., Hecke characters are "trivial" on 
Ex. Implicit here is the fact that all but finitely many of the Xt> are unramified, 
i.e., Xv(xv) = * f°r ^ xv i*1 E£ such t n a t 1*1 = 1- (The fact that Dirichlet 
characters give rise to such Hecke characters is spelled out in [We 3, p. 313]; we 
shall return to these matters in II.D.l.) 

Now we can define Hecke's abelian L-series attached to x = (xv) by 

LE(X, s) = 2 ^ ^ = IIO - X(9)N9-')-1. 
Jv(2l) <$ 

Here 51 is an (ordinary) ideal of 0E, and x(^T) is defined multiplicatively on 
the ideals relatively prime to those such that xv *s ramified (the "conductor" of 
X). In particular, x(^) = 0 whenever xv is ramified; otherwise, x(^) = Xv(&v) 
with <bv in Ev such that 1^1,, = N9~l (a " uniformizing" variable for Ev). 

If x is the unit character, i.e., xv = i ^or a^ ü' t n e n £̂:(X» ^) reduces to 
Dedekind's zeta-function ÇE(s). On the other hand, when E = Q and x is of 
finite order, L£(x, s) reduces to a familiar Dirichlet L-series L(s, x)- In 
general, using ingenious and complicated arguments, Hecke was able to derive 
the analytic continuation and functional equation for all these L-series in 1917. 

This settled, a natural arithmetic question was: how does a series like ÇE(s) 
factor into L-series involving only the field Q? Partly in an attempt to solve this 
problem, E. Artin was led (around 1925) to define yet another new L-series. 

2. Nonabelian L>jfunctions. Suppose AT is a number field, and E is a finite 
Galois extension of K with Galois group G = Gài(E/K). By a representation 
of G we understand a homomorphism a of G into GL(F), the group of 
invertible linear transformations of a complex vector space of dimension n. 
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Given a finite place 9 of K, we say a prime % of OE lies over 9 (or divides 
9) if ® appears in the factorization of ^O^ into prime ideals of OE. Given 
such a pair ®/?P, the following "local" objects are defined, each depending on 
$ only up to conjugation in G: 

(1) The decomposition group D^ — {g G G: g(®) = ®}; 
(2) The inertia subgroup 

ƒ$ = { g E D § : g(x) = x (mod ® ) for all x G 0E); 

(3) The Frobenius automorphism Fr$ generating the cyclic group D<%/I% « 
Gal(0£/<S: O*/?) . When 7ft = {1}, we call 9 unramified in £. In this case, 
F% represents a conjugacy class in G. Because almost all 9 are unramified in 
this sense, and because knowledge of Fr^ completely determines the factoriza
tion type of such 9 (cf. our Introduction), it is natural to focus attention on 
these Fr$. In general, if E is abelian over K, i.e., G = Gal(E/K) is abelian, 
than A&, I<% and Fr^ depend only on 9 (and are denoted Ap, 1$ and F% 
accordingly). In particular, Fr^ reduces to a distinguished element (as opposed 
to a conjugacy class) of G. 

Returning to our representation a: G -> GL(F), let K& denote the subspace 
of V formed by vectors invariant by o(I%). Then a(Fr$) is defined unambigu
ously on VQ, and the "Euler factor" 

L9(o, s) = [det( ƒ - o(Fia)N9-1 | K J ] ' ! 

depends only on <3\ not ®. Note that for almost all <3\ /<& = {1}, V% = V, and 
hence L<$(o, s) is of degree n in (Nty)'*. 

Now we can finally define Artin 's L-function attached to a by the product 

L(o, s) = LE/K(o, s) = ][LQ(O, S), 

convergent for Re(s) > 1. 

THEOREM 1 (ARTIN). Suppose E is abelian over K, and a: G -> Cx is a 
character. Then there exists a Hecke character x — {xv)v of K (not E) such that 
LE/K(a9 s) = L(x, S) (Hecke9S abelian L-series for K). 

In order to prove this theorem, Artin formulated and proved his celebrated 
"reciprocity law" for abelian extensions of number fields. For a leisurely 
account of these matters, see [Tate]. Because Artin and Hecke L-series coincide 
in the case of abehan extensions, the terminology "abelian L-functions" for 
Hecke's L(s9 \) seems apt. 

THEOREM 2 (ARTIN-BRAUER). In general, L(o, s) extends to a meromorphic 
function of C with functional equation 

L(a9 s) = e(a, s)L(ov, 1 — s), 

av the contragredient representation o(g~l)f. 

The proof of this theorem relies on Theorem 1 together with R. Brauer's 
(1947) factorization 

LE/K{°> S) = HLE/Kt(
ai> s)ni'> 
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here each Kt is intermediate between K and E, a, is a representation of 
Gal(E/Kt) of dimension 1, and nt is an integer. 

THEOREM 3 (ARTIN). Let H denote the {finite) set of all irreducible representa
tions of G {listed up to isomorphism). Then 

SE(')= RLE/K(O,S)^°\ 
O<EH 

This is the sought-after factorization of ÇE(s) alluded to at the end of 
paragraph II.C.l. Note that when E is abelian over K, and K — Q, Theorems 3 
and 1 together imply that ÇE(s) factors as the product of Hecke L-series, a 
nontrivial assertion involving the theory of cyclotomic fields (in particular, the 
Kronecker-Weber theorem asserting that every abelian extension of Q embeds 
in some cyclotomic field). 

Question. When dim(a) > 1, what is the nature of these nonabelian L-series 
L(o, s)l In particular, if dim(a) = 2, does L(o, s) have any relation to 
Hecke's "automorphic" Dirichlet series ty(s) = *2an/n

s (if not with the abelian 
L-series L(x, s))l 

CONJECTURE (ARTIN). Suppose dim(a) > 1, and a is irreducible, i.e., F has 
no proper invariant subspaces under o(G). Then LE/K(o, s)is actually entire. 

Note that the truth of Artin's Conjecture is at least consistent with the 
known analytic behavior of the automorphic L-functions L(s, ƒ ) (cf. Hecke's 
Theorem 2 in II.B.2). We shall return to these matters in earnest in Parts III 
and IV. 

CONCLUDING REMARK. The "constant" e(a, s) appearing in the functional 
equation for L(a, s) is defined by piecing together some global notions (the 
Artin "conductor of a ") with a product of gamma functions. But following the 
lead of our local-global principle, one should attempt to define e(a, s) instead 
as the product of purely local factors e(ov, s). Eventually this was accom
plished by Langlands (with some finishing touches by DeUgne). As we shall 
see, this accomplishment made possible a serious attack on the above questions 
(at least for dim(a) = 2) and helped to develop the program this article 
eventually describes. 

Note. Our exposition here closely follows the first few sections of Carrier's 
Bourbaki talk [Cart 1]. 

D. Group representations in number theory. We come at last to the fourth 
and final ingredient for the soup we shall mix up in Part III. 

If G is a group, a (unitary) representation of G is a homomorphism IT from G 
to the group of invertible (unitary) operators on some (Hubert) space F, not 
necessarily finite dimensional. If G is a topological group, continuity assump
tions are also imposed on ir9 but we shall ignore them here. Examples of 
representations encountered thus far in this survey include: 

(1) The case when V is the one-dimensional space C; in this case, a 
representation on V is simply a character—a homomorphism from G to (the 
torus in) C*. A Hecke character, for example, is a collection (xv) °^ 1-dimen
sional representations of E£. 
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(2) The case when Fis finite dimensional and G is a finite group; the Artin 
L-functions L(a9 s), for example, are attached to «-dimensional representa
tions a of G = Gd(E/K). 

The use of group representations in systematizing and resolving diverse 
mathematical problems is certainly not new, and the subject has been ably 
surveyed in several recent articles, notably [Gross and Mackey]. The reader is 
strongly urged to consult these articles, especially for their reformulation of 
harmonic analysis as a chapter in the theory of group representations. 

In harmonic analysis, as well as in the theory of automorphic forms, the 
fundamental example of a (unitary) representation is the so-called "right 
regular" representation of G, defined in a space of functions {<£} on G by the 
formula (R(g)<t>)(x) = <f>(xg). 

Our interest here is in the role representation theory has played in the theory 
of automorphic forms. We focus on two separate developments, both of which 
are eventually synthesized in the Langlands program, and both of which derive 
from the original contributions of Hecke already described. 

1. Tate's adelic treatment of Heche's L-series. In his 1950 Princeton thesis, J. 
Tate showed how to use representations (or rather characters) of adele groups 
to reformulate and reprove Hecke's (complicated) results on the functional 
equation of his "abelian" L-series. 

What is an adele group? It is really just a device for simultaneously 
considering all the completions of an object such as the rational field Q. In this 
context, the adele ring A is the subgroup of the infinite product II^ooQ^ 
consisting of those sequences {xp} with | *^ |p < 1 for all but a finite number of 
primes p. The idele group A* is defined similarly as the subgroup of the 
(multiplicative) group üp<o0 Qp consisting of sequences {yp} with \yp \p — 1 for 
all but finitely many places p. In other words, the adeles and ideles are 
restricted direct products of/?-adic objects. For a general number field in place 
of Q, similar definitions apply with v in place of p. 

Note that the assignment of an idele or adele group to a number field F is 
entirely consistent with the local-global principle of II.A in that all local 
objects are introduced on an equal footing and the goal is to analyze the global 
object F. Pushing this principle to the extreme, Tate used this notion to define 
and analyze Hecke's "abelian L-functions" purely in local terms, as we shall 
now explain. 

Let AF (resp. A^) denote the adeles (resp. ideles) of F. The topology on A 
(resp. Ax) is defined in such a way that every continuous character \p of A is of 
the form \p(x) = II„ $v(xv) with \pv a continuous character of Fv for each place 
Ü, and for all but finitely many v, $v(xv) = 1 whenever 1 * ^ < 1. Similarly, 
any character x of A* is of the form II„ xv(

xv)> with Xv unramified for almost 
all Ü, i.e., Xv(xv) = * whenever |xü|ü = 1. Thus a character x which is trivial 
on the so-called principle ideles Fx (embedded diagonally in A*) is the same 
thing as a Hecke character (xv) of E. In this case, we also call x an idele class 
character, since it descends to a character of the so-called idele class group 
Ax/Fx. 

Now fix a character ip = Ity„ of A which is trivial on F (again embedded 
diagonally in A). Given a Hecke character x = II Xt» T a t e defined, for each 
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nice "Schwartz function" fv on the field Fv, a "local zeta-function" 

1 v 

Using a local Fourier transform fv (defined in terms of the local character \pv\ 
Tate then proved that each ?(ƒ„, xv>

 s) n a s a n analytic continuation and 
functional equation of the form 

with y(xv> ^ s) a meromorphic function of s which is independent of fv. In 
fact, let 

if xv is unramified, and 1 otherwise. Then £(/,, x„, s)/L(xv, s) is entire for all 
ƒ„, and equals 1 for appropriately chosen fv; moreover, 

MX,»*) 

with e(Xt?» t̂» -y) = 1 whenever x„ (also \pv) is unramified. 
Now return to the global setting and consider the (global) Hecke L-series 

L(X,s) = ]lL(xv,s). 
V 

By considering global zeta-functions of the form 

Sif.X.*) = f f(x)x(x)(x)s-1 dx = n « / c , Xv,s), 
A V 

Tate was easily able to prove that L(x, s) has an analytic continuation and 
functional equation of the form 

L(s,x) = e(s,x)L(l -s,X~l) withe(^,x) = IIe(Xo^o» *)• 
V 

In addition to clarifying and simplifying Hecke's work, Tate was thus also able 
to give a purely local interpretation to the "constant" e appearing in Hecke's 
functional equation. 

These ideas and others are vastly generalized by Langlands in the "Lang-
lands program". The immediate impetus and inspiration for this program 
actually came from Langlands' general theory of Eisenstein series (cf. [Art]). 
The sequence of events seems to have unfolded like this: a careful analysis of 
the "constant term" of these general Eisenstein series first suggested the 
definition of the general automorphic L-functions L(s9 IT) (discussed in Part 
III), then the general conjectures (discussed in Part IV), and finally the purely 
local definition of the constants in the functional equations of Artin's non-
abelian L-series (analogous to Tate's treatment of the abelian case). In fact, the 
existence and properties of the local e-factors "on the Galois side" were 
predicted by the newly found properties of the e-factors "on the representation 
theory side"; cf. Part III. It is interesting to note that here, as in Tate's work 
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and its generalizations, most of the work in proving the global results goes into 
the local theory; for earlier important work on the "Galois" e-factors, see 
[Dwork]. 

Finally, as we shall see in Part III, Hecke characters are themselves examples 
of automorphic representations. Thus most of these results of Tate, Hecke and 
Artin are subsumed simultaneously in Langlands' theory. 

Notes. There are now several good expositions of Tate's original work, 
[Rob 2] being one of them. Tate's thesis itself makes for surprisingly pleasant 
reading; cf. [Cas Fro]. 

2. Automorphic forms as group representations. How do classical automorphic 
forms amount to special examples of infinite-dimensional representations—first 
of the group SL2(R), then of the so-called adele group of GL2? 

For convenience, we shall consider only automorphic forms of even integral 
weight for the full modular group T = SL2(Z); for details and more examples, 
the reader is referred to [Ge 1]. 

The connection between automorphic forms and infinite-dimensional repre
sentations seems first to have been made explicit in [Ge Fo]. It starts with the 
observation that the stabihzer in SL2(R) of the point / in the upper half plane H 
is the rotation group S02(R), whence the identification 

# ~ S L 2 ( R ) / S 0 2 ( R ) . 

If f(z) is an automorphic form of weight k for SL2(Z) it defines a function <fy 
on SL2(R) through the formula 

a b] 
c d\' 

This function can be shown to satisfy the following properties: 

(0) Hgy(O)) = e-ik%(g) for r(0) = 

(i) <HYg) = <Kg) for all <t> in SL2(Z); 
(ii) there is a second-order differential operator A—called the Laplace or 

Casimir operator on SL2(R)—such that 

A<t> = -\k{k - 2)<J>. 

Indeed the automorphy property off(z) translates into condition (i), and the 
holomorphy of ƒ translates into the eigenfunction condition (ii). The technical 
regularity condition on ƒ "at the cusps" corresponds to a boundedness condi
tion on <J>, and if ƒ actually "vanishes" at the cusps, then <j> satisfies a 
"cuspidal" condition which puts it in a distinguished subspace L\ of 
L2(SL2(Z)\SL2(R)). Here L2 denotes square-integrable functions with respect 
to the natural Haar measure on SL2(R) pushed down to the quotient space 
SL2(Z)\SL2(R); the "cuspidal" condition is included in the following hypothe
sis: 

(iii) <f> G L2 and the "zeroth Fourier coefficient" 

L4l ïW* 

(1) 4>(g) = (d + <0-V(f±») ifg = 

cos 0 sin 6 
-sin 0 cos 0 

vanishes. 
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Conversely, if <t>(g) is any function on SL2(R) satisfying these four condi
tions, then <t> is of the form <Jy for some ƒ in Sk(T). In other words, Sk(T) is 
isomorphic to a certain subspace Ak(T) of the space of "cusp" forms 
Lg(SL2(Z)\SL2(R)). 

To obtain a more general notion of "automorphic cusp form on SL2(R)" it 
is natural to weaken (ii) to the condition that <j> be any eigenform of A. In this 
way we recover, for example, the "new" real-analytic "wave forms" which 
H. Maass discovered in 1949 in connection with his analysis of the functional 
equation of the Dedekind zeta-function of real (as opposed to imaginary) 
quadratic extensions of Q; cf. §2 of [Ge 1] for more details. 

Having brought into play the group SL2(R), the next step is to bring into 
play its representation. (It is also natural to weaken condition (0) and simply 
require 0 to be "right SO(2)-finite".) 

The right regular representation R of SL2(R) on the space L\ is defined by 

R(g)<t>(h) = <t>(hg), g,/*inSL2(R). 

We recall this is a unitary representation of G because the mapping g H> R(g) 
is a homomorphism from G to the group of unitary operators on L\. Moreover, 
this representation is related to the differential operator A since it commutes 
with A, i.e., 

AJR<J> = #A<£, for all nice </>. 

By a general principle of representation theory, such invariant operators A may 
be used to decompose the representation R into invariant subspaces. More 
precisely, the closure of each eigenspace £ of A is then invariant for the action 
of R, i.e., R(g)(£) C £ for all g in SL2(R). In particular, R is the direct sum of 
representations of SL2(R) in the various eigenspaces £. 

Since all the irreducible unitary representations of SL2(R) are known, it is 
natural to ask which of them occurs in these eigenspaces, and with what 
multiplicity. 

EXAMPLE. Fix ƒ in 5A:(SL2(Z)), and let tf denote the subspace of 
Lo(SL2(Z)\SL2(R)) generated by ty and its right translates by elements of 
SL2(R). Suppose, in addition, that / is an eigenfunction for all the Hecke 
operators T(p). Then tf is an irreducible subspace of L\ realizing the so-called 
discrete series representation of SL2(R) of weight h. 

This example shows that automorphic cusp forms are one and the same 
thing as irreducible unitary representations of SL2(R) which are "automorphic 
cuspidal", i.e., equivalent to some subrepresentation of R in L%. In other 
words, the construction of automorphic forms amounts to knowing how the 
right regular representation R decomposes. Thus it is natural to generalize this 
notion further to an arbitrary Lie group G and discrete subgroups T such that 
T\G has finite volume. In practice, one deals primarily with "semisimple" 
groups G and "arithmetic" subgroups T. For example, if G is the real 
symplectic group Sp„(R), and T = Sp„(Z), a generalization of the so-called 
"Siegel modular forms" (studied by C. L. Siegel) is obtained; cf. [Langlands 1]. 
In general, much progress has been made in analyzing quahtative features of 
the decomposition of the regular representation R of G in the space L\. In 
particular, one knows there are only finitely many invariant subspaces of L% 
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which are equivalent (as G-modules) to a given "automorphic cuspidal repre
sentation" IT (similarly any space of generalized cusp forms, of "fixed weight" 
for T, is finite dimensional). 

Despite the appeal of the program just described, recalling the local-global 
principle should give us pause for thought. By working with a group like 
SL2(R), we have put special emphasis on R as a completion of Q, whereas we 
really should be paying equal attention to all the/?-adic fields Q .̂ Indeed by 
dealing only with SL2(R), we cannot hope to naturally view/(z) as a "global 
object", or to throw light on the Euler product expansion which can exist for 
the Dirichlet series of/(z). 

What is clearly indicated now is that we view groups like SL2(R) as the 
infinite component of some global object. Following the lead of imbedding R 
as the infinite component of AQ, we set, for each prime/?, 

G, = GL2(Q,), Kp = GL2{Op)9 

where Op = {JC G Q :̂ \x\p < 1}, and we write G^ for GL2(R). Then the 
corresponding adelic group GA is defined to be the restricted direct product 

GA = G L 2 ( A ) = II' Gp, 

where "restricted" here means we are including only the sequences (gp) for 
which gp belongs to Kp for all but finitely many p. The group GQ = GL2(Q) is 
embedded as a discrete subgroup of GA via the diagonal embedding. 

Now suppose, as before, that f(z) belongs to 5A:(SL2(Z)). By modifying 
formula (1), we can "lift" f(z) all the way up to a function <Jy(g) on GA such 
that 

4>(yg) = <f>(g)> for all y in GQ, 

and <j>(zg) = <|>(g), for all z in the center ZA = {[g °]: a G A*} of GA. More
over, <fy(g) satisfies a cuspidal condition like (iii); we refer the reader to [Ge 1] 
for a careful discussion of the approximation theorem which makes this lifting 
possible and well defined. The switch from SL2 to GL2 was made for reasons 
of convenience which need not concern the nonexpert. 

Where do we stand now? We again have a right regular representation R of 
GL2(A), this time on LQ(ZAGQ\GA), and the functions <fy just described he in 
this space. So we may again ask, for a given ƒ, which irreducible unitary 
representations of GA occur in the representation R restricted to the subspace 
generated by each <j> and its right translates. It is known that: 

(i) Every irreducible unitary representation m of GA is of the form ®p <np, 
with TTp an irreducible unitary representation of Gp for each p9 and for almost 
all p, mp has a vector fixed for the action of irp(Kp\ i.e., irp is unramified. (This 
is in complete analogy to the description of an idele class character x as a 
Hecke character IIx^) 

(ii) The classical Hecke operators T(p) can be described purely locally as 
convolution operators on the G -̂component of the function ty on GA. 

(iii) If T(p)f= apf for all /?, then <fy generates an irreducible subspace tf of 
LQ(ZAGQ\GA)9 and the representation 7 7 = ® ^ realized in this subspace can 
be described purely locally in terms of the eigenvalues ap (and the weight k). 
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The point is that we have finally succeeded in viewing automorphic forms as 
global objects which can be analyzed by "local objects" (Hecke operators, for 
example). Moreover, we have indicated that these notions might make sense 
for groups more general than GL2, and that all "places" should be treated on 
an equal footing. Thus we are ready—at last—to introduce the general notion 
of an "automorphic representation" and to describe Langlands' theory. 

We note that classical automorphic forms on all the so-called congruence 
subgroups of SL2(Z) can also be lifted to functions on GQ\GA. So by working 
"adelically" with GL2, we are actually simultaneously treating the theory of 
automorphic forms for all these discrete subgroups. For a thorough discussion 
of these and related matters, see [Ge 1, Rob 1 and G G PS]. 

III. AUTOMORPHIC REPRESENTATIONS 
In this part, G will denote the group GLM regarded as an "algebraic group 

over the number field F ". For all practical purposes, this simply means we can 
"complete" G at any place v of F to form the groups Gv = GLn(Fv) and then 
"adelize" G by forming the restricted direct product GA = U'v Gv, just as we did 
for GL2 and GLl (= Fx). In the case of GLW, the product 11̂  Gv is restricted 
with respect to the subgroups Kv = GLn(Ov), with Ov = {x G Fv: \x\„ < 1}. 
By GF we denote the group GF — GLn(F) regarded as a discrete subgroup of 
GA via the diagonal embedding y -> (y, . . . ,y , . . . ). 

Although GLn is almost sufficient for the purposes of this expository article, 
it should be stressed that we could just as well be dealing with an arbitrary 
"connected reductive algebraic group G defined over F" (as we shall in fact do 
at the end of Part IV). 

A. Some definitions. Let JLQ denote the Hubert space of square-integrable 
functions <f> on GF\GA satisfying a certain cuspidal condition. When n = 1, this 
condition is vacuous; when n = 2, it generalizes the condition a0 = 0 for 
functions <j> corresponding to classical automorphic forms/(z) = 2^= 0 ane

27rinz 

(cf. condition (iii) in II.D.2). By R0 we denote the right regular representation 
of GA in L\ given by R0(g)<t>(h) = 4>(hg). 

Suppose IT is an irreducible unitary representation of GA in some space Hm. 
Then IT can be factored as a restricted direct product m = ®irv, with each % an 
irreducible unitary representation of Gv — GLn(Fv). This is analogous to the 
factorization II Xv encountered for Hecke characters, and to the factorization 
mf— ®irp discussed in Part II.D.2. In particular, for almost all v9 TTV is 
unramified; this means that its space Hv contains (a one-dimensional space of) 
vectors which are left fixed by the group of operators ir(kv), kv in Kv. The 
product ®v ITV is restricted in the sense that its space consists of vectors 
w — <8>wv with the property that wv is A^-fixed for almost all v. Thus the 
representation <n(g) is well defined by the formula 

V 

since irv(gv)wv belongs to Kv for almost every v. 
If there exists an isomorphism A between Hm (the space of IT) and some 

subspace Vw of 1% such that Air{g) = R(g)A for all g in GA, then we say m is 
equivalent to some subrepresentation of R0, or more simply, that IT "appears" 
infl0 . 
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DEFINITION. An irreducible unitary representation of GA is called a cuspidal 
automorphic representation of G if it appears in the right regular representation 
R0 of G. 

REMARKS, (i) In order to avoid further technical discussion, we have over
looked the fact that GF\GA does not quite have finite volume, and thus that L% 
does not quite possess minimally invariant subspaces Vm. These technical 
problems are overcome by considering invariance with respect to the central 
subgroup 

[[ z 

1 
LLo 

o" 

z_ 

"] 

:z e Al 

J 
the reader can consult [Ge 1 or Art] for details. 

(ii) For similar reasons we have made our notion of automorphic representa
tion more restrictive than it should be. Indeed, we should not be restricting 
ourselves to cuspidal functions, and we also should not be insisting that IT 
necessarily occur "discretely" in any right regular representation. The correct 
notion of automorphic representation, together with a discussion of the techni
cal problems which ensue, is discussed in [Langlands 5 and Bo Ja]. 

EXAMPLES OF AUTOMORPHIC REPRESENTATIONS. (1) An automorphic repre
sentation of GLj is just a character x — IIx» on the idele class group F \ A , and 
L(s, x) — n(l — Xv(àv)Nv~s)~l is the L-function attached to this automorphic 
representation. Here, and henceforth, Nv denotes the cardinality of the finite 
field Ov/Pv, the ring of integers in Fv modulo the prime ideal Pv = {x G Ov: 
| * | < 1 } . 

(2) In II.D.2, we saw that a classical automorphic form in Sk(SL2(Z)% with 

T(p)f=apf for all/., 

uniquely determines an automorphic cuspidal representation irf — ®irp of GL2 

over Q. Conversely, every automorphic cuspidal representation IT = ®irp de
termines some classical automorphic form/(z), though not necessarily for the 
full modular group SL2(Z), and not necessarily holomorphic (as opposed to 
real analytic). Moreover, for ƒ as above, the /?th local factor in the Euler 
product expansion of <t>f(s) — *2ann~s is 

L,(s) = (l - app~' +P*-1-2*)-1 = [(l - app-){\ - PpP-s)\X. 

In both these examples, important information about global objects (x or 
f(z)) is stored by local objects (Xt, or a^). Indeed, it is precisely this fact which 
makes it possible to introduce an L-function in local terms and in a uniform 
manner independent of the underlying group. 

Let us now explain how this works in general. 

B. Local invariants. Given an arbitrary irreducible unitary representation 
7T = ®%, how can we attach to <nv local data which will simultaneously 
characterize irv and feed neatly into a local Euler factor L(s, %)—even when m 
is not necessarily automorphic? The answer to this question involves the 
so-called theory of spherical functions and unramified representations of Gv. 
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Fix a finite place v of F, and suppose irv is an unramified representation of 
Gv. Then the theory of spherical functions assigns to irv an element Av of the 
complex torus Tn which is unique up to the natural action of the permutation 
group Sn on Tn. 

Roughly speaking, the procedure is this: let H® denote the space of 
GLw(6>0)-fixed vectors wv in the space of %, and let %v denote the convolution 
algebra of locally constant, GLw(0r)-bi-invariant, and compactly supported 
complex-valued functions on Gv (called the Hecke algebra); then the formula 

defines a representation of %v on the one-dimensional space H%9 and the 
resulting character ƒ-> x ^ ( / ) defines (via the so-called Satake isomorphism) 
an element Av of Tn (unique up to permutation); details are discussed in §IV 
of [Cart 2] and §§6, 7 of [Bo]. In fact, irv is itself determined by (the class of) 
Av. Thus there results an injection irv\-> Av taking unramified representations 
of Gv to "semisimple" (i.e., diagonalizable) conjugacy classes in the group 
GL„(C). 

Let us return now to the global situation. Given IT — 0wo , we let Sm denote 
the finite set of places v outside of which wv is unramified, and we consider the 
family of conjugacy classes {Av}9 v & Sw. The point is that this construction 
generalizes the assignment of conjugacy classes which is implicit in the classical 
theory of Hecke, and yet it makes sense for all (not necessarily automorphic) 
representations IT of GLW(A). 

For example, if n = 1 and TTV is an unramified character xv of F*9 then Av is 
simply x ^ w j , the value of xv

 a t a n v l°cal uniformizing variable. Also, if 
X — IIXÜ is actually automorphic, i.e., trivial on Fx

9 then the family {̂ 4̂ }, 
v ^ Sw, actually determines x uniquely. 

Now suppose n = 2, and irf = ®irp is an automorphic cuspidal representa
tion of GL2(A) corresponding to the classical cusp form f(z) = yZane

1'ninz in 
S*(SL2(Z)). If T(p)f = apf for all/?, then 

T/Y o 1 
inGL2(C), 

with apfip = pk~l and ap + fip = ap. In particular, the eigenvalues ap com
pletely determine the local representations irp, and it turns out that the family 
of classes {Ap} completely determines ƒ (or IT). 

In general, for GLW, it still turns out that the local data {^„j determine the 
global representation IT uniquely provided TT is automorphic. (This is a nontriv-
ial recent result of Jacquet, Piatetski-Shapiro and Shalika [J PS S 2].) Thus we 
are witnessing a powerful variation of the local-global principle at work in the 
context of general automorphic representations. Simultaneously, we are obtain
ing a handle on introducing general L-functions and comparing automorphic 
representations of different groups, both cornerstones of the Langlands pro
gram we shall now finally describe. 

A = 
p 

an 
p 

0 

0" 

4>j 
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IV. THE LANGLANDS PROGRAM 
How does Langlands' theory not only tie together the strands woven in Part 

II but also develop the general notions of Part III (automorphic representa
tions and L-functions) beyond their classical origins? 

A. Preliminary L-functions. Langlands' theory begins by attaching an L-
function to an arbitrary irreducible unitary representation TT — ®irv of GA. 
(Here, as in Part III, G is the group GLn, but the more adventurous reader can 
imagine it to be an arbitrary reductive algebraic group.) 

Given m, let Sv again denote the finite set of places v of F outside of which 
irv is unramified, and for each v £ S„ let Av denote the semisimple conjugacy 
class 

A = 

0 

0 

in GL(w, C) corresponding to TTV as in III.B. Then consider the Euler product 

vesn 

with 

L(*,0=[det(/-[4,]jyfo-')]"'. 
This is an Euler product of degree n in the sense that each Euler factor L(s, irv) 
is of the form P~\Nv~s) with P a polynomial of degree n and P(0) = 1. The 
infinite product can be shown to converge for Re(^) sufficiently large. 

THEOREM. Suppose TT = ®7rv is an arbitrary irreducible representation of GA. 
Then for all v one can define Euler factors L(s, irv) of degree < «, and local 
factors e(s, ITV\ such that z{s, %) is 1 for almost all v, and 

L(s,irv) = det(l-[Av]Nv-syl 

whenever v is unramified. Moreover, if IT is actually automorphic cuspidal, then 
the Euler product 

L(S,TT) = ]\L(s,7rv), 
v 

initially defined only in some right half-plane, satisfies the following properties: 
(i) it extends to an entire function of C (unless n = 1 and IT is the trivial 

character, in which case L(S,TT) has a pole); 
(ii) it satisfies the functional equation 

L(s, IT) — e(s, TT)L(\ — s,if), 

with m the representation "contragredient" to m, and 
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REMARKS, (i) This theorem was first proved by Jacquet and Langlands in 
[JL] for the case n = 2. The general case appears in [GoJa]. We note that 
when n — 1, this theorem reduces to the work of Tate described in Part II.D.l. 
In case n = 2 it represents a vast reformulation and generalization of Hecke's 
work; in particular, it finally sheds light on the Euler product expansion of 
Hecke's Dirichlet series 

<t>f(s) = 2^=(2„yr(s)-lL(s',„,) 

and interprets the constant in the functional equation of 4>f(s) in terms of the 
local groups Gv. This last point underscores one of the key contributions of the 
original work of Jacquet and Langlands and will be discussed presently. 

(ii) It is natural and important to ask if this theorem has a converse. In other 
words, suppose that {A^}, v outside some finite set of places 5, is a family of 
semisimple conjugacy classes in GLW(C). Suppose, in addition, that 

II det{l - A*v(Nv)-syl 

v(£S 

converges in some right half-plane to an analytic function which has properties 
similar to those established in the theorem above. Is there then an automorphic 
cuspidal representation TT of GA such that Av(irv) = A% for each v outside S? 
The answer in general is no. However, an appropriate characterization of 
"automorphic" families {Av} was given in [JL] for the case n — 2 by generaliz
ing the classical converse theorems of Hecke and Weil already described; for 
n = 3, a "converse theorem" is given in [J PS S1]. 

Let us briefly discuss some corollaries of the Converse Theorem for GL2. As 
mentioned earlier, Weil's characterization of the L-functions attached to classi
cal automorphic forms led him to conjecture that the zeta-function 

$(E,s) = Y[{det[l-A*pp-°]yl 

of an elliptic curve E over Q is really the L-function of an automorphic cusp 
form of weight 2. The point is that once the zeta-function of such a curve is 
conjectured to have nice analytic properties, it will follow that the semisimple 
conjugacy classes {A*} in GL2(C)—which one obtains by counting points on 
the "reduced curve mod /?"—should comprise an "automorphic" family of 
conjugacy classes for GL2. 

On the other hand, Langlands' locai analysis of the constants in the 
functional equation of Artin's nonabelian L-functions led Jacquet and Lang
lands to relate these L-functions as well to "automorphic" L-functions. Indeed, 
modulo Artin's conjecture on the entirety of his L-functions, the nonabelian 
L-functions of degree 2 have been shown to satisfy all the hypotheses of the 
"Converse theorem" for GL2 (cf. [Deligne2]). For arbitrary w, there is the 
following remarkable "Reciprocity Conjecture". 

CONJECTURE 1 (LANGLANDS). Suppose E is a finite Galois extension of F 
with Galois group G = Gsà(E/F), and a: G -* GLW(C) is an irreducible 
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representation of G. Then there exists an automorphic cuspidal representation 
TT0 on GLn over F such that L(s, ira) = L(s, a). 

Note that when n — 1 and E over F is abelian, this conjecture reduces to 
Artin's celebrated "reciprocity law" relating L(s, a) to Hecke's abelian L-series 
L(s, x). Moreover, for arbitrary «, the truth of this conjecture implies the truth 
of Artin's conjecture on the entirety of his L(s, a), since L(s, TT) is entire for 
any (nontrivial) cuspidal representation m of GLn. 

Note also that we have at last succeeded in showing how Langlands' theory 
(at least conjecturally) subsumes all the classical themes and results discussed 
in Part II. 

B. L-groups and the functoriality of automorphic representations. To proceed 
deeper into Langlands' program, it is necessary to deal finally with more 
general groups than GLn and to introduce the notion of an "L-group". This 
latter notion is already implicit in the definition of L-functions for GLW, but 
needs to be made explicit before these functions can be generalized. 

Recall that if m — ®TTV is a representation of GL„(A), the theory of spherical 
function assings to each ü ï ^ a well-defined semisimple conjugacy class in 
GLn(C). Actually, to be more precise, the theory of spherical functions 
establishes a bijection between unramified representations irv and orbits of 
unramified homomorphisms of the local torus 

T -

O 

O . an 

: a, in F> 

Here " unramified" means that the restriction to 

:, O 

Tv(Ov) 

O 
: «, in Of! 

is trivial, and orbits are understood taken with respect to the action of the 
so-called Weyl group (which in this case is just Sn). 

Now the structure theory of GLn is such that these sets of orbits of 
"quasi-characters" are in natural 1-1 correspondence with semisimple con
jugacy classes of the complex group GLW(C). What the notion of an L-group 
does is systematize this analysis and extend it to more general reductive 
groups. Since we are ignoring the definition and structure theory of a general 
reductive group, we refer the reader to [Cart 2, Springer, Humph or Ti] for 
details and examples. 

Suppose first that G is a "split" such group—an arbitrary connected 
reductive group with a maximal torus split over F. Guided by the facts just 
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described for GLW, Langlands (in [Langlands 2]) constructed a complex reduc
tive Lie group LG°—the "L-group of G". For G = GL„, of course LG° = 
GLW(C). Here are some other examples: 

G 

PGL„ 
SP2„ 
so2„+1 

LG° 
PGL„(C) 
SL„(C) 
so2„+1(C) 
Sp2„(C) 

In general, the construction of LG° uses the notions of maximal tori, root 
systems, etc., concepts originally introduced to classify the complex Lie alge
bras and their finite-dimensional representations. The result is a bijection 
between the unramified representations of Gv and the semisimple conjugacy 
classes of LG°, i.e., orbits of the maximal torus LT° with respect to the "Weyl 
group" of (LG°,Lr°); note that if G = GL„, then LT° = T\ and the Weyl 
group is just (isomorphic to) Sn. In any case, given an irreducible unitary 
representation m — ® TTV of GA, with TTV unramified for all v outside Sv9 there is 
defined a collection of conjugacy classes {Av} in LG°. 

DEFINITION. If r is any finite-dimensional complex analytic representation of 
LG°, define 

Lv(s, 77, r) = det[/ - r(Av)Nv'3]'1 

for v g Sv9 and 

L(s,TT,r) = II Lv(s,ir,r). 

Here, as before, Nv denotes the cardinality of the finite field Ov/Pv. 
These L-functions generalize those already defined for GLn in Part III. 

Indeed, if G = GL„, and r: GL„(C) -> GLW(C) is the obvious "standard" 
representation, then L(s, IT, r) — L(s, IT). On the other hand, fixing G = GLn, 
and letting r vary over all possible representations (and dimensions), we obtain 
a family of L-functions for GLW. 

CONJECTURE 2'. Suppose IT is actually automorphic. Then L(s, IT, r), initially 
defined only in some right half-plane, continues meromorphically to C with a 
functional equation relating L(s, TT, r) to L(l — s, TT, r). 

Unfortunately, there are very few examples of verifications of Conjecture 2'. 
One example, however, is particularly closely related to the "principle of 
functoriality" which we shall soon discuss. 

Suppose G — GL2 (so LG° — GL2(C)), and let r denote the 3-dimensional 
adjoint representation of GL2(C) obtained by composing the natural adjoint 
action of PGL2(C) (on the 3-dimensional Lie algebra of trace zero 2 X 2 
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matrices) with the natural projection map GL2(C) -> PGL2(C). Thus we have 
the diagram 

LG° = GL2(C) ^ GL3(C) 

\ / A d 

PGL2(C) 

In [Ge Ja] it is shown that Conjecture 2' is true for this G and r. Note, in this 
case, that 

Lv(s, 7T, r) = det[/ - r(Av)Nv"]'1 = det[/ - [A'v]Nv"Yl 

is an Euler factor of degree 3. What is shown in [Ge Ja], using the Converse 
Theorem for GL3, is that the family of conjugacy classes {r(Av)} = {A'v} in 
GL3(C) = L(GL3)° is actually "automorphic", i.e. belongs to an automorphic 
representation ÏÏ = ®UV of GL3. This result is predicted by, and indeed 
simply a special realization of the principle embodied in Conjecture 3' below. 

Suppose G and G' are split groups, and p: LG° ->LG'° is an analytic 
homomorphism. If r' is any finite-dimensional representation of LG'°, then 
r — r' o p is a finite-dimensional analytic representation of LG°. If IT is an 
automorphic cuspidal representation of G, and v £ Sv, let A'v denote the 
semisimple conjugacy class in LG'° which contains p(Av). Then 

L(s,ir,r)= II det[l - r'(A'v)Nv-']~l, 
vas 

and the analytic continuation and functional equation of the function on the 
right, i.e., for the family A'v, would follow from Conjecture 2'. Thus we are led 
to the following "functoriality principle" of Langlands: 

CONJECTURE 3'. Given an analytic homomorphism p: LG° ->LG°, and an 
automorphic representation m — ®TTV of G, there is an automorphic represen
tation m' of G' such that Sv — S„, and such that for each v ÇÉ S„9 A'v is the 
conjugacy class in LG'° which contains p(Av). In particular, 

L(.y,7r', r') = L(s9 ir, r' o p) 

for each finite-dimensional representation r' of LG'°. 
In order to minimize the brain strain that results from the unfolding of these 

conjectures, it is helpful to note that each is actually contained in an ap
propriately formulated functoriaUty conjecture. For example, suppose we take 
G' = GLn and r' to be the standard representation of GLW(C). Then 
L(s9 TT, rf o p) — L(s9 ir, r) = L(s, 7r'), and the functional equation and ana
lytic continuation of L{s9 TT, r) would be assured by Theorem 1 if m' were 
indeed automorphic. In other words, Conjecture 3' implies Conjecture 2''. 

In order to also incorporate Conjecture 1 (Langlands' reciprocity conjecture) 
it is necessary to slightly reformulate Conjecture 3' by taking into account the 
fact that, unlike GLW, not all groups are "split" over F. Without going into 
details (to which we refer the reader to [Bo]),, we collect some fundamental 
facts below. 
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Suppose G is an arbitrary connected reductive group defined over F, and K 
is a (sufficiently large) Galois extension of F. Then one can define a complex 
reductive Lie group LG°, together with an action of Gal(K/F) on LG°, such 
that the resulting semidirect product, LG —LG° X Gal(#/F), satisfies the 
following properties: 

(i) In case G is "split" over F (in particular, when G — GL„), LG reduces to 
a direct product (the action of Gd\(K/F) on LG° being trivial); 

(ii) In general, if v is a prime of F unramified in K, with corresponding 
Frobenius automorphism Fr ,̂ there is a 1-1 correspondence between "un
ramified" representations irv of Gv = G(FV) and conjugacy classes t(7rv) in

 LG 
such that the projection of t(7rv) onto Ga\(K/F) is the class of Fr„; see [Bo] 
for more details. 

This group LG, which plays the same role for arbitrary G as GL„(C) plays 
for the group G, is called the (Galois form of the) L-group of G. By a 
representation of LG we understand a homomorphism r: LG -> GL^(C) whose 
restriction to LG° is complex analytic. By an L-homomorphism of L-groups LG 
and LG' we understand a continuous homomorphism 

p: LG -> LG' 

Gal(ü:/F) 

which is compatible with the natural projections of each group onto Gal(AyF) 
(and whose restriction to LG° is a complex analytic map of LG° to LG'°). 

In terms of these concepts we can finally formulate the ultimate generaliza
tions of Conjectures 2' and 3'. 

CONJECTURE 2. Suppose IT = ®irv is an automorphic representation of G 
and r is a finite-dimensional representation of LG. Then the Euler product 

L{*> *>r) = II det[7 - r(f(*J)M>-*]-\ 
unramified 

initially defined in a right half-plane of s, continues meromorphically to all of 
C with functional equation relating L(s, TT, r)to L(l — s, €, r). 

CONJECTURE 3. (FunctoriaHty of automorphic forms with respect to the 
L-group). Suppose G and G' are reductive groups and p: LG -*LG' is an 
L-homomorphism. Then to each automorphic representation *n — ®*nv oi G 
there is an automorphic representation m' — ®m„ of G' such that for all 
v £ S^ (i.e. unramified v), t{ir^) is the conjugacy class in LG' which contains 
t(7rv). Moreover, for any finite-dimensional representation r' of LG', 

L(s,7r',r') = L(,y,7r,r'op) 

CONCLUDING REMARKS. This last conjecture of Langlands' really does imply 
all the preceding conjectures discussed heretofore. 
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First take G' = GL„ and suppose r is any «-dimensional representation of 
LG (G arbitrary but fixed). Let p: LG -» LG' be such that the following diagram 
commutes: 

LG - GLW(C) 

P \ /'st 
LG' = GL„(C) X Gal(K/F) 

(Here St: LG -> GL„(C) is the standard representation of LG, namely projec
tion onto the component LG° = GL„(C).) Then assuming the truth of Conjec
ture 3, we have a lift of automorphic forms m -» m' between G and G' with 

L(s,7T,r) = L(s,7T,St o p) = L(s, AT', St) = L ( J , TT'), 

with the last L-function (on GLW) "nice" by [GoJa]. Thus Conjecture 3 not 
only implies Conjecture 2, but also reduces the study of generalized L-func-
tions for arbitrary G to the known theory for GLn ! 

Now suppose G = {e} (the trivial group) and again take G' — GL„. Then 
the only possible automorphic representation of G is the trivial one, and an 
L-homomorphism pa:

 LG-*LG' amounts to specifying a representation a: 
GsH(K/F) -> GLM(C) such that p0(l X y) = o(y) X y for all y G Gal(K/F). 
Thus Conjecture 3 amounts to the assertion that there is an automorphic 
representation 7ra of GLn (associated to the trivial representation of G via 
p = pa) such that for all unramified primes v, the projection of t(7rv) on 
GL„(C) is just o(Frv). In particular, 

L(s97Ta) = L(s,o), 

which means Conjecture 3 indeed implies Conjecture 1 (Langlands' Reciproc
ity Conjecture). 

Note. A careful and detailed exposition of Langlands' general program is 
found in [Bo]; our brief sketch of the theory follows [Art]. 

C. What's known? Though many specific cases of the functoriality conjecture 
(Conjecture 3) have been verified, it is far from being solved. The most 
comprehensive survey of known results (and work in progress) is found in [Bo]. 
The reader is also referred to [Langlands 3] for a concise, illuminating discus
sion. 

In the paragraphs below, we shall comment briefly only on a small part of 
the recent work in this area. 

1. Artin's Conjecture and Langlands' Reciprocity Conjecture. Here we follow 
[Art] quite closely. Suppose K is a Galois extension of F, and F = Q (for 
simplicity). We think of K as the splitting field of some monic polynomial/(x) 
with integer coefficients. For almost all primes p, namely those " unramified" 
in K, we let Fr^ denote the (conjugacy class of a) Frobenius automorphism in 
Gal(A/Q). Recall that the prime/? "splits completely" in K (i.e., the ideal it 
generates in the ring of integers OK factors into [A^Q] distinct prime ideals of 
OK) if and only if Fr^ = Id. In terms of the polynomial ƒ(*), this means (in 
general) that f(x) splits into linear factors "mod /?". 
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Let S(K) denote the set of primes p which split completely in K. For 
example, if K = Q(\^T), then S(K) = {p: p = 1 (mod4)}. In general, it is 
known that the map K -» S{K) is an injective order reversing map from finite 
Galois extensions of Q into subsets of prime numbers. In other words, the set 
of splitting primes determines K uniquely. Thus it is natural to pose the 
following: 

Problem. What is the image of this map? I.e., what sets of prime numbers are 
of the form S(K)1 

A solution to this problem would constitute some kind of "nonabelian class 
field theory" since we would be able to parametrize all the finite Galois 
extensions K of Q by the collections S(K) (which are intrinsic to Q). In case 
we restrict attention to abelian extensions, a solution is known in terms of 
congruence conditions like those for the example K = Q(/-T); this is the 
"abelian class field theory" discussed in Parts I and II. In general, such a neat 
solution cannot be expected, but any intrinsic characterization of these sets 
S(K) certainly deserves to be called a reciprocity law. 

What light do Langlands' ideas shed on this fundamental problem? 
Let Q denote an algebraic closure of Q. Given a Galois extension K of Q as 

above, there exists a homomorphism a: Gal(Q/Q) -> GL„(C) with the prop
erty that Gal(Q/K) is the kernel of r. Thus we get an injective homomorphism 
o: Gal(X/Q) -> GLW(C) to which we can attach the Artin L-function L(s, o) 
discussed in II.C.2. Moreover, the definitions are such that 

S(K)={p:o(Frp) = l}. 

Now consider again Langlands' Conjecture 1. It asserts that the family 
{o(Frp)} is automorphic, i.e., that there exists an automorphic representation 
IT = ® mp of GL„ such that for all/? outside Sv9Ap = ^(Fr^). In particular, 

S(K)={p:Ap = l}. 

Thus (the truth of) Conjecture 1 reduces the reciprocity problem above to 
the study of automorphic representations of GLW(A). Moreover, this relation is 
typical of the perspectives which Langlands' program brings to classical 
number theory. 

The fact that the collections S(K)—which classify Galois extensions of 
Q—might be recovered from data obtained analytically from the decomposi
tion of the right regular representation R into irreducibles is not only ab
stractly satisfying, it also gives us a handle on solving the original problem. 
Indeed, when n = 2, Langlands has already applied the theory of representa
tions to prove Conjecture 1 for a wide class of irreducible representations a of 
G&\(K/F). For a discussion of these matters, see [Ge3, GerLab] and the 
original sources [Langlands 3,4]; the most recent results are described in [Tun]. 

2. Other examples. Below we provide a partial list of recent verifications of 
the functoriality principle; for more complete discussions and references the 
reader is again referred to [Bo]. 

(a) Base-change. Take E to be a cyclic Galois extension of F of prime degree. 
Then automorphic representations of GL2 over F "lift" to automorphic 
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representations of GL2 over E corresponding to the following homomorphism 
of L-groups. If G = GL2, then the group G' = ResfG (obtained "by restric
tion of scalars") is such that G'F (the points of G' over F) — GL2(£); its 
L-groups is LG' = GL2(C) X • • • XGL2(C) XI Gà\(E/F), the Galois group 
acting on LG'° = GL2(C) X • • • XGL2(C) by permuting coordinates. The 
L-group homomorphism p which gives rise to "base change lifting" is then 
given by simply imbedding LG° diagonally in LG°'. The resulting "lifting 
theorems" (due to Saito, Shintaini and Langlands) play a fundamental role in 
Langlands' proof of his Conjecture 1 for (certain) two-dimensional Galois 
representations a. 

(b) Zeta-functions of algebraic varieties. We have already alluded to Weil's 
conjecture asserting that the zeta-function of an elliptic curve is "automorphic". 
Similar results have been conjectured more generally for the zeta-functions 
(counting points mod p) for general algebraic varieties over F. The classical 
results center around "EicWer-Shimura theory", and a general theory has been 
developed by Langlands, Deligne, Milne, Shih, Shimura and others. For an 
elementary introduction, see [Ge2]; for a survey of recent developments, see 
[Bo, Cas], and the references therein. 

(c) Local results. Although we have not emphasized this fact, nearly all the 
assertions thus far treated have local counterparts which are part and parcel of 
the global theory. For example, the local part of Langlands' Reciprocity 
Conjecture amounts to a (conjectured) parametrization of the irreducible 
representations of Gv = GLn(Fv) by w-dimensional representations of the 
Galois group of Fv (such that e-factors are preserved.) For n — 2 this is already 
a highly nontrivial and very interesting assertion, the truth of which has just 
recently been verified by P. Kutzko; see [Cart 1] for a complete exposition of 
the problem. For GL„ over a /?-adic field, especially when p \ n, see [Moy and 
Hen]. 

3. Related questions. There are other important directions in the theory of 
automorphic forms (cf. [Mazur Wiles, Gross B and Rib]) which do not as yet fit 
in neatly with the general Langlands program. Clearly it would be profitable to 
pursue the connections with these works and other purely diophantine investi
gations. 

D. Methods of proof. Thus far, three general methods have been used to 
attack automorphic problems such as the functoriality conjecture. We shall 
merely sketch the barest outline of these methods and some representative 
examples of their successes. Undoubtedly, totally new methods are called for 
as well. 

(1) 0-series. This is perhaps the oldest, most venerable approach, which 
began with the classical discovery that 

0(z) = | e*in2* 

- 0 0 

defines an automorphic form; more generally, as we already remarked in II.B, 
similar (automorphic) theta-series can be attached to quadratic forms in any 
number of variables. 
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The representation-theoretic construction of automorphic forms via theta-
series has as its point of departure the fundamental paper [We 2] published in 
1964. In that paper, Weil found a proper group-theoretic home for general 
theta-functions 0(g), namely the symplectic groups Sp2n(^4) and their two-fold 
covering groups (the so-called metaplectic groups). Thus Weil was able to 
reinterpret the extensive earlier works of C. L. Siegel on quadratic forms and to 
open the way for group representation theory to be used in the construction of 
(automorphic) theta-series. 

According to Weil, the proper generalization of the classical theta-series 0(z) 
is a certain automorphic representation of GA = Sp2w(A), called Weil's rep
resentation. This representation acts by right translation in a space of gen
eralized theta-functions 0(g); by analyzing (in particular, decomposing) this 
representation, a great deal of interesting information about theta-series can be 
obtained. For example, in order to understand Hecke's construction of theta-
series attached to grossencharacters of a quadratic extension of Q, one simply 
decomposes (an appropriate tensor product of) Weil's representation of SL2(A) 
= Sp2(A) into irreducible (automorphic) representations; this is what was 
carried out in [ShaTan]. For a survey of similar applications of Weil's 
representation to the construction of automorphic forms, see [Ge4]. 

Now what is the connection between these constructions and the functorial-
ity conjecture of Langlands? The best way to answer this question is to bring 
into play R. Howe's theory of "dual reductive pairs", yet another simple 
principle of great beauty and consequence. 

Suppose G and G' are subgroups of Sp2/1 which are each others' centralizers, 
i.e., (G, G') comprises a "dual reductive pair" in the sense of [Ho 1]. 

The decomposition of Weil's representation restricted to G X G' should then 
give a correspondence m -> m' attached to some L-group homomorphism 
LG ->LG'. Indeed, this restriction should decompose as a sum of representa
tions m ® m' with m' an irreducible representation of G' uniquely determined 
by m (a representation of G); moreover, <n' should be automorphic if and only 
if IT is. For a careful description of this "duality correspondence", see [Ho 1]. In 
practice, one can usually construct the (global) correspondence IT -> *n' directly 
by using a formula like 

(1) fW - */(*) = ƒ 6(g9h)f(h)dh; 
JGF\GA 

here ƒ is an automorphic form on GA in the space of TT, 0(g, h) is a 
theta-function on Sp2„(A) restricted to GA X GA, and <f>f is a function on GA 

which generates the automorphic representation IT'. (This operator essentially 
projects the restriction of Weil's representation onto the isotypic component 
"belonging to the irreducible representation TT ".) 

EXAMPLES FOR (1). (i) Take (G, G') C Sp4 with G the norm 1 group of a 
quadratic extension E of Q, and G' = SL2 = Sp2. Then the corresponding lift 
X -> v defined by (1) generalizes the construction of Hecke's just alluded to. 
In particular, if E over Q is real, one obtains Maass' construction of nonnolo-
morphic modular forms; cf. [Ge 1] for details. 

(ii) Let G (resp. G') denote the unitary group of an isotropic Hermitian space 
in two (resp. three) variables over a quadratic extension E of F. Then (G, G') 
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naturally embeds as a dual reductive pair in Sp12, and the corresponding lift 
7T -> IT' has been analyzed via (1) in [Ge PS 1]. 

We note that the exact relation between the duality correspondence just 
sketched and the Langlands lifting predicted by Conjecture 3 is not at all 
transparent, and in fact is a bit delicate; the interested reader is referred to the 
Introduction of [Ral] for more discussion of "Langlands functoriality for the 
Weil representation". 

(2) L-functions. This method has already been discussed at some length in 
this paper. Its success in constructing automorphic representations (and thereby 
verifying the functoriality conjecture) is based mainly on the "Converse 
Theorem", which asserts that a representation of GA is automorphic if and only 
if enough of its L-functions are "nice". To be sure, since this "Converse 
Theorem" has been proved in a useful form only for GL2 and GL3, the range 
of applicability of this method is somewhat limited (see, however, the remarks 
following the examples below). 

EXAMPLES FOR (2). (i) Take E to be a cubic (not necessarily Galois) 
extension of a number field F, G = Ex (actually Resf GLj), and G' — GL3. 
Then there is a natural L-homomorphism p: LG -+LG' (corresponding roughly 
to the "toral" embedding of LG° = Cx X Cx X Cx into GL3(C)), and the 
corresponding hft x -* ^x between grossencharacters of Ex and automorphic 
representations of GL3 is such that L(s, 7rx) — L(s, x)- The converse theorem 
works here because L(s, x) (and hence L(s, w )) is known to be "nice" by 
Hecke's theory of abelian L-functions (cf. Parts II.C.l and II.D.l); analogous 
arguments for quadratic extensions and GL2 give a different approach to 
Example (l)(i). 

(ii) If G = GL2, G' - GL3, and p: GL2(C) -> GL3(C) is the adjoint repre
sentation described in Example III.B, then the corresponding lift TT -> II has 
already been discussed. 

(iii) Take G equal to the unitary group in three variables over E introduced 
in Example (l)(ii), and G' — Resf G (so G'F — GL3(L)). Then one can attach 
to each automorphic cuspidal representation m of GA an L-function (of degree 
6 over F) which is meromorphic with functional equation and (by the converse 
theorem for GL3 over E) belongs to an automorphic representation it' of 
GL3(A£)); cf. [GePSl]. The resulting correspondence TT -+ m' then defines a 
"base change hft" for U3. 

There are more subtle (and recent) applications of the theory of L-functions, 
especially to the functoriality principle, which go beyond the confines of the 
converse theorem. I have in mind mostly the use of L-functions in characteriz
ing the image of the liftings which come from dual reductive pairs, for example 
the deep work of [Wald] characterizing the image of the so-called Shimura 
correspondence, and the work of [PS] on the Saito-Kurokawa lifting between 
PGL2 and Sp4; this work promises to shed light on a wide variety of examples, 
in particular, the (as yet undeveloped) theories of base change for the metap-
lectic group and PGSp4. 

Equally worthy of mention is the recent work of [J PS S 3] on base change 
for GL2 to a cubic nonnormal extension E of F. As mentioned in IV.C.2(a), 
"base-change" was fully developed for GL2 (cf. [Langlands4]) for cyclic Galois 
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extensions of F of prime degree. To prove the theorem for nonnormal E an 
appeal is made to the theory of L-functions on GLn X GLm as developed in 
[J PS S 2]; moveover, to date at least, the trace formula proof used for Galois 
extensions (see below) has not been made to work for nonnormal E. 

(3) The trace formula. This method is both the newest and "hottest" 
approach to studying automorphic representations. Without pretending to go 
to the heart of the matter we shall give a very rough idea of how this method 
works. Unfortunately, the subject is in such a state of flux and development 
that even the experts can get confused and frustrated. 

What is " the trace formula"? For a given group G, let us consider our friend 
the right regular representation JR (cf. II.D) of GA acting in Ll(GF\GA). It 
decomposes as a sum of irreducible (unitary) automorphic representations m of 
G, each with finite multiplicity mm, i.e., 

(2) R = @mjr. 

Since one goal of the theory of automorphic forms is to understand which m 
occur in (2), and since an irreducible representation m is determined by its 
"character", it is natural to want to compute the character of R. This is what 
" the trace formula for G " does. Of course we can't just take the trace of a 
unitary representation (it doesn't exist!), so we have first to integrate the 
representation against a "nice" compactly supported function ƒ on GA (getting 
the operator R(f) = Jf(g)R(g) dg which can be shown to be of trace class). 
On the one hand, we have 

(3) tr*( ƒ ) = 2m„X„(/ ) , 

where 

X„(/) = trace{//(g)7r(g)rfg}. 

On the other hand, using the explicit form of R{ f ), as an integral operator in 
L2(GQ\GA), we get a second (more complicated) expression for the trace which 
makes no reference to the decomposition (2); instead it involves expressions 
intrinsic to the geometry of the group, for example "orbital integrals" of ƒ over 
"rational" conjugacy classes in GA, etc. 

The idea is that by carefully examining this "second form of the trace 
formula" one should be able to conclude something about the expression (3), 
i.e., about the automorphic representations m of GA. In practice, however, this 
turns out to be nearly impossible, i.e., it is difficult to show that a given 
representation m of GA occurs in (2) by just analyzing an explicit formula for 
trR(f). What does seem to work, however, is to compare the (second forms of 
the) trace formula for two different groups G and G' and then conclude that if 
TT occurs in (R, GA) then m' will occur in (R\ GA). 

For example, suppose G is the multiplicative group of a division quaternion 
algebra and G' — GL2. In §16 of [JL] the trace formulas for these groups are 
compared, and the conclusion is that there is a correspondence IT -» m' between 
the (greater than one-dimensional) automorphic representations of G and a 
certain subset of the automorphic IT' on GL2(A). In fact, this correspondence is 
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consistent with the identity homomorphism between the L-groups of G and G'\ 
in particular, L(s, IT) — L(s, IT'). 

As already suggested, the prototype example of this approach to the func-
toriality principle is the base-change lifting introduced in Example IV.C.2(a). 
Other examples include: 

(i) A new treatment of the "Adjoint" lifting GL2 -> GL3 due to Fücker 
[Flick 1]; here, as in all such applications of the trace formula, one can 
characterize the image of the lifting as well; 

(ii) A different proof of base change and lifting for the unitary group £/3; cf. 
[Flick 2]. 

Warning. Most applications of the trace formula involve pairs of groups G, 
G' whose conjugacy classes are not so earily compared as suggested in the 
examples above; this leads to the thorny notions of "instability" for the trace 
formula, "L-indistinguishability" and the like. Though these notions arose 
initially as impediments to a direct application of the trace formula, Langlands 
figured out how to turn them into powerful weapons for proving his Functori-
ality Conjecture. Indeed, these suggestions have already been followed in some 
of the works just mentioned; for a comprehensive but difficult introduction to 
this increasingly active research domain, see [Langlands 6, Shel 5 and Flick 1,2]. 

CONCLUDING REMARKS. It is a happy circumstance that the three methods 
of proof just sketched complement each other remarkably well. For example, 
sometimes a deep theorem can be proved only by using a mixture of two or 
three of these approaches. An example of this is Langlands' Reciprocity 
Conjecture for "tetrahedral" two-dimensional representations of Gal(K/F); 
cf. [Langlands 3 or Ge3] for a leisurely discussion. On the other hand, some
times a result can be proved by using any one of these approaches, but each 
method affords its own particular advantages. An example of this is the lifting 
of automorphic representations from a division quaternion algebra to GL2; 
proofs using L-functions or the trace formula are found in [JL], and a direct 
proof using theta-series is the subject matter of [Shimizu]. A slightly different 
kind of example is the correspondence between automorphic representations of 
the metaplectic group and GL 2 (Shimura's correspondence); cf. 
[Shimura,GePSl, Flick 3 and Wald]. Thus, as already suggested by our 
discussion of base change, no one of these methods has a monopoly on proving 
interesting theorems. 

E. A few last words. It should be clear by now that the strength of 
Langlands' program lies as much (or more) in suggesting new problems as well 
as in resolving old ones. 

Given two groups G and G', and an L-homomorphism between them, what 
is the relation between the automorphic representations of G and G'? 

Given a number-theoretically defined family of conjugacy classes in some 
complex group like GL„(C), what is the "automorphic nature" of this collec
tion? 

Questions like these will undoubtedly keep mathematicians busy for a long 
time to come. 
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