LOCAL RINGS OF FINITE SIMPLICIAL DIMENSION

BY LUCHEZAR L. AVRAMOV

In this note R denotes a (noetherian, commutative) local ring with residue field k. Our purpose is to determine those R, over which k has finite (co-)homological dimension as an R-algebra in the simplicial theory of André [1] and Quillen [11]. Recall that regular local rings are characterized in this theory by the vanishing of the homology group $D_2(k|R)$. Furthermore, it is known that each of the conditions (i) $D_3(k|R) = 0$, (ii) $D_4(k|R) = 0$, (iii) $D_q(k|R) = 0$ for $q \geq 3$, is equivalent to R being a complete intersection, by which we mean that in some (hence in any) Cohen presentation of the completion \hat{R} as a homomorphic image of a regular local ring \hat{R}, the ideal $\ker(\hat{R} \to \hat{R})$ is generated by an \hat{R}-regular sequence.

Theorem 1. If $D_q(k|R) = 0$ for q sufficiently large, then R is a local complete intersection.

Remark 1. The previous statement proves a conjecture of Quillen [11, Conjecture 11.7] and answers a question of André [1, p. 118]. When $\text{char}(k) = 0$, its validity is established by [11, Theorem 7.3] and Gulliksen’s result in [10].

Remark 2. It has been shown by the author and Halperin [4] that in characteristic zero the conclusion of the theorem holds under the (much) weaker assumption that $D_q(k|R) = 0$ for infinitely many values of q. It is not known whether the restriction is essential, and in fact it is an open question, in any characteristic, whether the cotangent complex is rigid, i.e.: Does $D_q(k|R) = 0$ for a single $q \geq 1$ imply that R is a complete intersection?

The proof of Theorem 1 uses some precise information on the growth of the coefficients of the formal power series $P_R(t) = \sum_{n \geq 0} \dim_k \text{Tor}_i^R(k,k)t^n$. For our present purpose it is best expressed in terms of the radius of convergence $r(P_R(t))$. Note that the inequality $r(P_R(t)) > 0$ has been known for a long time to hold for any local ring R, and that for complete intersections one even has $r(P_R(t)) \geq 1$.

Theorem 2. The inequality $r(P_R(t)) \geq 1$ characterizes complete intersections.

Remark 3. The last result has been conjectured both by Golod and by Gulliksen, and proved, in case $R = \bigoplus_{i \geq 0} R_i$ is graded with $R_0 = k$ a field of characteristic zero, by Felix and Thomas [9]. Results related to Theorem 2 are discussed in [2]; complete proofs will appear in [3].

Received by the editors September 26, 1983.

1980 Mathematics Subject Classification. Primary 13H10, 18H20; Secondary 13D10.

1This note was prepared while the author was a Visiting G. A. Miller Scholar at the University of Illinois, on leave of absence from the University of Sofia, Bulgaria. He was partially supported by a grant from the United States National Science Foundation.

© 1984 American Mathematical Society

0273-0979/84 $1.00 + $.25 per page
PROOF OF THEOREM 1. Denote by $L_{k|R}$ the cotangent complex of the R-algebra k (so that $H_*(L_{k|R}) = D_*(k|R)$ by definition), and by S^k the symmetric algebra functor, extended—dimensionwise—to simplicial k-vector spaces. There is a convergent "fundamental spectral sequence", due to Quillen [11, Theorem 6.3], such that

$$E_{p,q} = H_{p+q}(S^k_{L_{k|R}}) \Rightarrow \text{Tor}^R_{p+q}(k,k).$$

With $E(t)$ denoting the formal power series $\sum_{j \geq 0} \left(\sum_{p+q=j} \dim_k E_{p,q} \right) t^j$, this implies a coefficientwise inequality $E(t) \geq P_R(t)$; hence for the radii of convergence one obtains

$$r(P_R(t)) \geq r(E(t)).$$

The simplicial vector space $L_{k|R}$ decomposes, according to Dold [7], in a direct sum $V \oplus (\bigoplus W_i)$ of simplicial vector spaces, such that $H_*(V) = 0$, $H_n(W_i) \simeq k$ for some integer n_i, and $H_j(W_i) = 0$ for $j \neq n_i$. Since, by the general results of [1 and 11], $D_q(k|R)$ is finite dimensional for each q, our assumption implies the direct sum above involves only finitely many spaces W_1, \ldots, W_m. By [7] again,

$$H_*(S^k L_{k|R}) = H_*(S^k V) \otimes \bigotimes_{i=1}^m H_*(S^k W_i).$$

According to Dold and Thom [8], $H_*(S^k V) = k$, and

$$H_*(S^k W_i) \simeq H_*(K(Z, n), k),$$

where $K(Z, n)$ denotes, as always, the Eilenberg-Mac Lane space whose unique nontrivial homotopy group is infinite cyclic and located in degree n. Setting

$$\vartheta(n, k)(t) = \sum_{j \geq 0} \dim_k H_j(K(Z, n), k)t^j,$$

one can write

$$E(t) = \prod_{i=1}^m \vartheta(n_i, k)(t).$$

The circle S^1 being a familiar $K(Z, 1)$, and the complex projective space CP^∞ being a $K(Z, 2)$, one has, over any field k,

$$\vartheta(1, k) = (1 + t), \quad \vartheta(2, k) = (1 - t^2)^{-1}.$$

Furthermore, the identity

$$\vartheta(n, k) = (1 + (-1)^{n+1} t^n)^{(-1)^{n+1}}$$

is valid for all $n \geq 1$, when char(k) = 0.

Finally, when char(k) = $p > 0$, one has

$$r(\vartheta(n, k)(t)) = 1 \quad \text{for } n \geq 3.$$

For $p = 2$ this is established by Serre as a consequence of his computation of the mod 2 cohomology of $K(Z, n)$: cf. [12, §3, Theorem 5 and Corollary 1 to Theorem 2]. When p is odd, one can use in a similar way Cartan's
isomorphism \(H_*(K(Z,n),k) \cong \Gamma_*(C_*) \), where \(\Gamma \) denotes the free algebra with divided powers, and \(C_* \) is a graded vector space, determined in [6]. More precisely, according to [6, Main Theorem and Theorem 3], \(c_j = \dim C_j \) can be described as being the number of solutions of the equations

\[
h_1 + 2 \sum_{i=2}^{s} p^{i-1} h_i + 2 \sum_{i=1}^{s-1} p^{i-1} u_i = j, \quad h_1 + 2 \sum_{i=2}^{s} h_i + \sum_{i=1}^{s-1} u_i = n
\]

in nonnegative integers \(s, h_i, u_i \), subjected to the conditions \(u_i \leq 1; h_i + u_i \geq 1 \) for \(i = 1, 2, \ldots, s - 1; h_s \geq 1 \). In particular, \(c_j \) does not exceed the number of decompositions of \(j \) as a sum of \(2n - 1 \) nonnegative integers, hence

\[
C(t) = \sum_{j \geq 0} c_j t^j \leq (1 - t)^{-2n+1},
\]

yielding the inequality \(r(C(t)) \geq 1 \). It can be replaced by an equality since \(C(t) \) has integral coefficients and is not a polynomial. Because of this last circumstance one can also apply a result of Babenko [5], according to which \(r(C(t)) = r(\vartheta(n,k)(t)) \), hence (5) holds.

Formulas (1)–(5) show that Theorem 1 is a consequence of Theorem 2.

REFERENCES

INSTITUTE FOR ALGEBRAIC MEDITATION AND DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, ILLINOIS 61801