Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

The dynamical systems approach to differential equations


Author: Morris W. Hirsch
Journal: Bull. Amer. Math. Soc. 11 (1984), 1-64
MSC (1980): Primary 00A25, 00A99, 01A45, 01A55, 01A60, 34A40, 34C35, 34D10, 34D30, 35B05, 35B35, 35B40, 35B50, 35B30, 35K55, 54H20, 58F25, 58F40, 58F12, 58F10, 58D25, 58D07, 46A40, 46E10, 47H07, 47H20, 92A15, 92A17; Secondary 06F30, 35B65, 58F13, 35J60, 46E05, 92-03, 90-03, 90A16
DOI: https://doi.org/10.1090/S0273-0979-1984-15236-4
MathSciNet review: 741723
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • R. Abraham, 1971 Predictions for the future of differential equations, Lecture Notes in Math., vol. 206 (D. Chillingworth, ed.), Springer-Verlag.
  • R. Abraham and J. Marsden, 1967 Foundation of mechanics, Benjamin, New York.
  • Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. MR 515141
  • Ralph H. Abraham and Christopher D. Shaw, Dynamics—the geometry of behavior. Part 1, Visual Mathematics Library: Vismath, vol. 1, Aerial Press, Inc., Santa Cruz, Calif., 1982. Periodic behavior. MR 669376
  • M. Amman, 1976 Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18, 620-709. MR 415432
  • A. A. Andronov and L. Pontryagin, 1937 Systèmes grossiers, Dokl. Akad. Nauk. SSSR 14, 247-251.
  • D. V. Anosov, 1962 Roughness of geodesic flows on compact Riemannian manifolds of negative curvature, Soviet Math. Dokl. 3, 1068-1070. MR 143156
  • D. V. Anosov, 1967 Geodesic flows on closed Riemannian manifolds with negative curvature, Trudy Mat. Inst. Steklov 90, 3-209; English transl. in Proc. Steklov. Inst. Math. (I. G. Petrovskiĭ and S. M. Nikol´skiĭ, eds.), Amer. Math. Soc., Providence, R. I., 1969. MR 224110
  • V. I. Arnol′d, Geometrical methods in the theory of ordinary differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 250, Springer-Verlag, New York-Berlin, 1983. Translated from the Russian by Joseph Szücs; Translation edited by Mark Levi. MR 695786
  • Gunnar Aronsson and Ingvar Mellander, A deterministic model in biomathematics. Asymptotic behavior and threshold conditions, Math. Biosci. 49 (1980), no. 3-4, 207–222. MR 573187, https://doi.org/10.1016/0025-5564(80)90079-6
  • D. Berlinski, 1976 On systems analysis, MIT Press, Cambridge, Mass.
  • G. D. Birkhoff, 1920 Recent advances in dynamics, Science (N.S.) 51, 51-55 and Collected mathematical papers, vol. 2, Amer. Math. Soc., Providence, R. I., pp. 106-110.
  • G. D. Birkhoff, 1927 Dynamical systems, Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, R. I.; reprinted 1966. MR 209095
  • George D. Birkhoff, On the periodic motions of dynamical systems, Acta Math. 50 (1927), no. 1, 359–379. MR 1555257, https://doi.org/10.1007/BF02421325
  • G. D. Birkhoff, 1932 Sur l’existence de régions d’instabilité en dynamique, Ann. Inst. H. Poincaré 2, 369-386 and Collected mathematical papers, vol. 2, op. cit., pp. 444-461.
  • George D. Birkhoff, Sur le problème restreint des trois corps (premier mémoire), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 4 (1935), no. 3, 267–306 (French). MR 1556760
  • G. D. Birkhoff, 1941 Some unsolved problems of theoretical dynamics, Science 94, 598-600 and Collected mathematical papers, vol. 2, op. cit., pp. 710-712. MR 6260
  • G. D. Birkhoff, 1935a Nouvelles recherches sur les systèmes dynamiques, Mem. Pont. Acad. Sci. Nov. Lyn. 1, 85-216 and Collected mathematical papers, vol. 2, op. cit., pp. 530-661.
  • G. D. Birkhoff, 1943 The mathematical nature of physical theories, Amer. Sci. 31, 281-310 and Collected mathematical papers, vol. 2, op. cit., pp. 890-919. MR 9000
  • G. D. Birkhoff, 1950 Collected mathematical papers, vols. 1, 2, 3, Amer. Math. Soc., Providence, R. I.
  • G. D. Birkhoff and B. O. Koopman, 1932 Recent contributions to ergodic theory, Proc. Nat. Acad. Sci. U.S.A. 18, 279-282 and Collected mathematical papers, op. cit., vol. 3, pp. 462-465.
  • L. E. J. Brouwer, 1907 On the foundation of mathematics, Collected Mathematical Works, Vol. 1, American Elsevier, New York.
  • L. E. J. Brouwer, 1913 Intuitionism and formalism, Bull. Amer. Math. Soc. 20, 81-96; Collected works, Vol. 1, op. cit., pp. 123-138.
  • L. E. J. Brouwer, 1975 Collected works, Vol. 1 (A. Heyting, ed.), American Elsevier, New York. MR 532661
  • John L. Casti, Recent developments and future perspectives in nonlinear system theory, SIAM Rev. 24 (1982), no. 3, 301–331. MR 667511, https://doi.org/10.1137/1024065
  • T. M. Cherry, 1938 Analytic quasi-periodic curves of discontinuous type on a torus, Proc. London Math. Soc. (2) 44, 175-215.
  • T. M. Cherry, 1968 Asymptotic solutions of analytic Hamiltonian systems, J. Differential Equations 4, 142-159. MR 223678
  • W. A. Coppel, 1965 Stability and asymptotic behavior of differential equations, Heath, Boston. MR 190463
  • J. Coste, J. Peyraud, and P. Coullet, Asymptotic behaviors in the dynamics of competing species, SIAM J. Appl. Math. 36 (1979), no. 3, 516–543. MR 531612, https://doi.org/10.1137/0136039
  • D´Alembert and Diderot (Editors), 1754 Encyclopédie, Vol. 4, Briasson, David, LeBreton, Durand, Paris.
  • Darwin, 1892 Life of Charles Darwin (F. Darwin, ed.), John Murray, London.
  • Darwin, 1936 The origin of species and The descent of man, Modern Library, New York.
  • A. Denjoy, 1932 Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl. (4) 17, 333-375. MR 101369
  • Stillman Drake, Galileo at work, University of Chicago Press, Chicago, Ill.-London, 1978. His scientific biography. MR 531510
  • A. S. Eddington, 1927 The nature of the physical world, Cambridge Univ. Press, Cambridge, England.
  • A. Einstein, 1930 On the occasion of the three hundredth anniversary of Kepler’s death, Frankfurter Zeitung, November 9, 1930 and Ideas and opinions, Crown, New York, 1954.
  • A. Einstein, 1931 On the one hundreth anniversary of Maxwell’s birth, James Clerk Maxwell: A Commemorative Volume, Cambridge Univ. Press, Cambridge, England, and Ideas and opinions, op. cit.
  • John M. Franks, Homology and dynamical systems, CBMS Regional Conference Series in Mathematics, vol. 49, Published for the Conference Board of the Mathematical Sciences, Washington, D.C.; by the American Mathematical Society, Providence, R. I., 1982. MR 669378
  • Herbert I. Freedman, Deterministic mathematical models in population ecology, Monographs and Textbooks in Pure and Applied Mathematics, vol. 57, Marcel Dekker, Inc., New York, 1980. MR 586941
  • H. I. Freedman and Paul Waltman, Persistence in models of three interacting predator-prey populations, Math. Biosci. 68 (1984), no. 2, 213–231. MR 738903, https://doi.org/10.1016/0025-5564(84)90032-4
  • N. Georgescu-Roegen, 1966 Analytical economics: Issues and problems, Harvard Univ. Press, Cambridge, Mass.
  • Charles Coulston Gillispie, The edge of objectivity, Princeton University Press, Princeton, NJ, 1990. An essay in the history of scientific ideas; Reprint of the 1960 original. MR 1145737
  • W. H. Gottschalk and G. A. Hedlund, 1955 Topological dynamics, Amer. Math. Soc. Colloq. Publ., vol. 36, Amer. Math. Soc., Providence, R. I. MR 74810
  • Stephen Grossberg, Competition, decision, and consensus, J. Math. Anal. Appl. 66 (1978), no. 2, 470–493. MR 515909, https://doi.org/10.1016/0022-247X(78)90249-4
  • J. Guckenheimer, 1976 A strange strange attractor, The Hopf Bifurcation and Its Applications (J. E. Marsden and M. McCracken, eds.), Springer-Verlag, pp. 368-381. MR 494309
  • J. Guckenheimer, 1982 Noise in chaotic systems, Nature 298, 358-361.
  • John Guckenheimer and George Buzyna, Dimensional measurements for geostrophic turbulence, Phys. Rev. Lett. 51 (1983), no. 16, 1438–1441. MR 718790, https://doi.org/10.1103/PhysRevLett.51.1438
  • John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR 709768
  • J. Hadamard, 1912 L’oeuvres mathématique de Henri Poincaré, Acta Math. 38, 203-287; and Oeuvres de Jacques Hadamard4, CNRS, Paris, pp. 1921-2005.
  • J. Hadamard, 1912a Henri Poincaré et le problème de trois corps, Rev. Mois 16, 385-418 and Oeuvres de Jacques Hadamard, op. cit., pp. 2007-2041.
  • J. Hadamard, 1968 Oeuvres de Jacques Hadamard4, CNRS, Paris.
  • J. K. Hale, 1963 Oscillations in nonlinear systems, McGraw-Hill, New York. MR 150402
  • Thomas L. Hankins, Sir William Rowan Hamilton, Johns Hopkins University Press, Baltimore, Md., 1980. MR 618834
  • Brian D. Hassard, Nicholas D. Kazarinoff, and Yieh Hei Wan, Theory and applications of Hopf bifurcation, London Mathematical Society Lecture Note Series, vol. 41, Cambridge University Press, Cambridge-New York, 1981. MR 603442
  • R. Heilbroner, 1953 The worldly philosphers, Simon and Schuster, New York.
  • Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
  • H. W. Hethcote, 1973 Asymptotic behavior in a deterministic epidemic model, J. Math. Biol. 35, 607-614.
  • H. Hethcote, A. Nold and L. Yorke, 1982 Gonorrhea modelling: a comparison of control methods, Math. Biosci. 58, 93-109.
  • Morris W. Hirsch, Differential equations and convergence almost everywhere in strongly monotone semiflows, Nonlinear partial differential equations (Durham, N.H., 1982) Contemp. Math., vol. 17, Amer. Math. Soc., Providence, R.I., 1983, pp. 267–285. MR 706104
  • M. W. Hirsch, 1983a Systems of differential equations which are competitive or cooperative. II: Convergence almost everywhere, SIAM J. Math. Anal. (in press); preprint, Center for Pure and Appl. Math., Univ. of California, Berkeley.
  • Morris W. Hirsch, Systems of differential equations which are competitive or cooperative. I. Limit sets, SIAM J. Math. Anal. 13 (1982), no. 2, 167–179. MR 647119, https://doi.org/10.1137/0513013
  • S. B. Hsu, S. P. Hubbell, and Paul Waltman, Competing predators, SIAM J. Appl. Math. 35 (1978), no. 4, 617–625. MR 512172, https://doi.org/10.1137/0135051
  • E. Kamke, Zur Theorie der Systeme gewöhnlicher Differentialgleichungen. II, Acta Math. 58 (1932), no. 1, 57–85 (German). MR 1555344, https://doi.org/10.1007/BF02547774
  • F. Klein, 1911 Lectures on mathematics (Proc. Colloq., Evanston, 1893), Amer. Math. Soc., Providence, R. I.
  • A. Kolmogorov, 1936 Sulla teoria di Volterra della lotta per l´esistenzia, Giorn. Ist. Ital. Attuari 7, 47-80.
  • I. Kupka, 1963 Contribution à la théorie des champs génériques, Contributions to Differential Equations 2, 457-484. MR 165536
  • A. Lajmanovich and J. Yorke, 1976 A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci. 28, 221-236. MR 403726
  • W. Leonard and R. May, 1975 Nonlinear aspects of competition between species, SIAM J. Appl. Math. 29, 243-275. MR 392035
  • S. Lie, 1895 Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger Ordnung, Leipziger Berichte 47, 53-128 and Sophus Lie Gesammelte Abhandlungen (F. Engel, ed.), Bd. 4, Teubner, Leipzig, 1929, pp. 320-386.
  • E. N. Lorenz, 1963 Deterministic non-periodic flow, J. Atmospheric Sci. 20, 130-141.
  • A. Lotka, 1956 Principles of mathematical biology, Dover, New York.
  • J. E. Marsden and M. McCracken (Editors), 1976 The Hopf bifurcation and its applications, Springer-Verlag. MR 494309
  • Xavier Mora, Semilinear parabolic problems define semiflows on 𝐶^{𝑘} spaces, Trans. Amer. Math. Soc. 278 (1983), no. 1, 21–55. MR 697059, https://doi.org/10.1090/S0002-9947-1983-0697059-8
  • R. E. Moritz, 1914 Memorabilia mathematica, Macmillan, New York; reprinted as On mathematics and mathematicians, Dover, New York, 1958. MR 104557
  • J. Moser, 1973 Stable and random motions in dynamical systems, Princeton Univ. Press, Princeton, N. J. MR 442980
  • S. Newhouse, 1971 Nondensity of axiom A(a), Global Analysis, Proc. Sympos. Pure Math, vol. 14 (S.-S. Chern and S. Smale, eds.), Amer. Math. Soc., Providence, R. I., pp. 191-203. MR 277005
  • Sheldon E. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 101–151. MR 556584
  • Sheldon E. Newhouse, Lectures on dynamical systems, Dynamical systems (C.I.M.E. Summer School, Bressanone, 1978) Progr. Math., vol. 8, Birkhäuser, Boston, Mass., 1980, pp. 1–114. MR 589590
  • H. G. Othmer, 1976 The qualitative dynamics of a class of biochemical control circuits, J. Math. Biol. 3, 53-78. MR 406568
  • Jacob Palis Jr. and Welington de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982. An introduction; Translated from the Portuguese by A. K. Manning. MR 669541
  • J. PaLis and S. Smale, 1970 Structural stability theorems, Global Analysis, Proc. Sympos, Pure Math., vol. 14 (S.-S. Chern and S. Smale, eds.), Amer. Math. Soc., Providence, R. I. MR 267603
  • S. Peirce, 1955 The philosophical writings of C. S. Peirce, Dover, New York.
  • M. Peixoto, 1962 Structural stability on 2-dimensional manifolds, Topology 1, 101-120. MR 142859
  • M. Peixoto, 1973 On the classification of flows on two-manifolds, Dynamical Systems (M. Peixoto, ed.), Academic Press, New York. MR 334289
  • H. Poincaré, 1881 Mémoire sur les courbes définies par une équation différentielle, J. Math. Pures Appl. 7, 375-422 and Oeuvres, Vol. 1, Gauthier-Villars, Paris.
  • H. Poincaré, 1880-1890 Sur les courbes définies par les équations différentielles. I-VI, Oeuvres, Vol. 1, op. cit.
  • H. Poincaré, 1890a Sur les équations de la dynamique et le problème de trois corps, Acta. Math. 13, 1-270.
  • H. Poincaré, 1892, 1893, 1899 Les méthodes nouvelles de la mécanique céleste, Vols. I, II, III, Gauthier-Villars, Paris.
  • H. Poincaré, 1908 Atti IV Congr. Internaz. Mat. (Roma, 1908), Vol. I, Acad. dei Lincei, Rome, 1909.
  • H. Poincaré, 1914 La valeur de la science, Flammarion, Paris.
  • H. Poincaré, 1916-1956 Oeuvres de Henri Poincaré, Vols. 1-11, Gauthier-Villars, Paris.
  • Analyse des travaux scientifiques, Acta Math. 38 (1921), no. 1, 3–135 (French). Henri poincaré faite par lui-même. MR 1555105, https://doi.org/10.1007/BF02392063
  • G. Pólya And S. Szegö, 1971 Problems and theorems in analysis, Springer-Verlag.
  • M. Protter and H. Weinberger, 1967 Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, N. J. MR 219861
  • A. Rescigno and I. Richardson, 1967 The struggle for life. I: Two species, Bull. Math. Biophys. 29, 377-388.
  • J. Robinson, 1956 The accumulation of capital, Macmillan, London.
  • D. Ruelle and F. Takens, 1971 On the nature of turbulence, Comm. Math. Phys. 20, 167-192; ibid. 23, 343-344. MR 284067
  • M. Ruse, 1979 The Darwinian revolution, Univ. of Chicago Press, Chicago, Ill.
  • B. Russell, 1948 Human knowledge, its scope and limits, Simon and Schuster, New York.
  • B. Russell, 1955 Basic writings, 1903-1959 (R. Egner and L. Denner, eds.), Simon and Schuster, New York.
  • James F. Selgrade, Mathematical analysis of a cellular control process with positive feedback, SIAM J. Appl. Math. 36 (1979), no. 2, 219–229. MR 524498, https://doi.org/10.1137/0136019
  • James F. Selgrade, Asymptotic behavior of solutions to single loop positive feedback systems, J. Differential Equations 38 (1980), no. 1, 80–103. MR 592869, https://doi.org/10.1016/0022-0396(80)90026-1
  • L. Silk, 1976 The economists, Basic Books, New York.
  • S. Smale, 1961 On gradient dynamical systems, Ann. of Math. (2) 74, 199-206. MR 133139
  • S. Smale, 1962 Dynamical systems and the topological conjugacy problem for diffeomorphisms, Proc. Internat. Congress Math. (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 440-496. MR 176487
  • S. Smale, 1963 A structurally stable differentiable homeomorphism with an infinite number of periodic points, Proc. Internat. Sympos. Nonlinear Vibrations, Izdat. Akad. Nauk. Ukrain. SSR, Kiev. MR 160220
  • S. Smale, 1965 Diffeomorphisms with many periodic points, Differential and Combinatorial Topology (S. Cairns, ed.), Princeton Univ. Press, Princeton, N. J., pp. 63-80. MR 182020
  • S. Smale, 1966 Structurally stable systems are not dense, Amer. J. Math. 88, 491-495. MR 196725
  • S. Smale, 1967 Differentiable dynamical systems, Bull. Amer. Math. Soc. 73, 747-817. MR 228014
  • S. Smale, 1967a Dynamical systems on n-dimensional manifolds, Sympos. Differential Equations and Dynamical Systems (Puerto Rico), Academic Press, New York.
  • Steve Smale, The mathematics of time, Springer-Verlag, New York-Berlin, 1980. Essays on dynamical systems, economic processes, and related topics. MR 607330
  • S. Smale, 1976 On the differential equations of species in competition, J. Math. Biol. 3, 5-7. MR 406579
  • Steve Smale, The mathematics of time, Springer-Verlag, New York-Berlin, 1980. Essays on dynamical systems, economic processes, and related topics. MR 607330
  • M. Spivak, 1970 A comprehensive introduction to differential geometry, Vol. 1, Publish or Perish, Waltham, Mass.
  • S. Sternberg, 1969 Celestial mechanics, Part 1, Benjamin, Reading, Mass.
  • J. Strachey, 1956 Contemporary capitalism, Random House, New York.
  • J. Sylvester, 1877 Appendix to Address on Commemoration Day at Johns Hopkins University, in Collected mathematical papers of James Joseph Sylvester, Vol. 3, Cambridge Univ. Press, Cambridge, England, 1908, pp. 85-87.
  • G. Temple, 1958 Linearization and delinearization, Proc. Internat. Congress Math. (Edinburgh, 1958), Cambridge Univ. Press, Cambridge, England, pp. 233-247. MR 117376
  • R. Thom, 1975 Structural stability and morphogenesis, Benjamin, Reading, Mass.; original ed., Paris, 1972. MR 488156
  • W. Walter, 1970 Differential and integral inequalities, Springer-Verlag. MR 271508
  • John Andrew Walker, Dynamical systems and evolution equations, Mathematical Concepts and Methods in Science and Engineering, vol. 20, Plenum Press, New York-London, 1980. Theory and applications. MR 561511
  • Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
  • R. F. Williams, The structure of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 73–99. MR 556583
  • R. F. Williams, 1983 Review of “Dynamical Systems on Surfaces” by C. Godbillon, Amer. Math. Monthly (in press).
  • A. Winfree, 1979 The geometric theory of biological time, Springer-Verlag.
  • J. Z. Young, 1951 Doubt and certainty in science, Oxford Univ. Press, New York.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 00A25, 00A99, 01A45, 01A55, 01A60, 34A40, 34C35, 34D10, 34D30, 35B05, 35B35, 35B40, 35B50, 35B30, 35K55, 54H20, 58F25, 58F40, 58F12, 58F10, 58D25, 58D07, 46A40, 46E10, 47H07, 47H20, 92A15, 92A17, 06F30, 35B65, 58F13, 35J60, 46E05, 92-03, 90-03, 90A16

Retrieve articles in all journals with MSC (1980): 00A25, 00A99, 01A45, 01A55, 01A60, 34A40, 34C35, 34D10, 34D30, 35B05, 35B35, 35B40, 35B50, 35B30, 35K55, 54H20, 58F25, 58F40, 58F12, 58F10, 58D25, 58D07, 46A40, 46E10, 47H07, 47H20, 92A15, 92A17, 06F30, 35B65, 58F13, 35J60, 46E05, 92-03, 90-03, 90A16


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1984-15236-4

American Mathematical Society