Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Joel Smoller
Title: Shock waves and reaction-diffusion equations
Additional book information: A Series of Comprehensive Studies in Mathematics, Vol. 258, Springer-Verlag, New York, 1983, xx + 581 pp., $39.00. ISBN 0-3879-0752-1.

References [Enhancements On Off] (What's this?)

  • 1. H. Bakhrarov, On the existence of regular solutions in the large for quasilinear hyperbolic systems, Zh. Vychisl. Mat. i Mat. Fiz. 10 (1970), 969-980. MR 279443
  • 2. C. Conley and J. Smoller, On the structure of magnetohydrodynamic shock waves, Comm. Pure Appl. Math. 28 (1974), 367-375. MR 368586
  • 3. E. Conway and J. A. Smoller, Global solutions of the Cauchy problem for quasi-linear equations in several space variables, Comm. Pure Appl. Math. 19 (1966), 95-105. MR 192161
  • 4. R. Courant and K. O. Friedrichs, Supersonic flow and shock waves, Interscience, New York, 1948. MR 29615
  • 5. M. Crandall, The semigroup approach to first-order quasi-linear equations in several space variables, Israel J. Math. 12 (1972), 108-132. MR 316925
  • 6. C. M. Dafermos, Characteristics in hyperbolic conservation laws. A study of the structure and the asymptotic behavior of solutions, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 1 (R. J. Knops, ed.), Pitman, London, 1977. MR 481581
  • 7. C. M. Dafermos, Hyperbolic systems of conservation laws, Systems of nonlinear partial differential equations (Oxford, 1982) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 111, Reidel, Dordrecht, 1983, pp. 25–70. MR 725517
  • 8. C. M. Dafermos, Quasilinear hyperbolic systems that result from conservation laws, Nonlinear Waves (S. Leibovich and A. R. Seebass, eds.), Cornell Univ. Press, Ithaca, N. Y., 1974.
  • 9. C. M. Dafermos, Generalized characteristics and the structure of solutions to hyperbolic conservation laws, Indiana Univ. Math. J. 26 (1977), 1097-1119. MR 457947
  • 10. E. DeGiorgi, Su una teoria generale della misura (r - 1)-dimensionale in uno spacio ad r dimensioni, Ann. Mat. Pura Appl. (4) 36 (1954), 191-213. MR 62214
  • 11. R. J. DiPerna, Decay and asymptotic behavior of solutions to nonlinear hyperbolic systems of conservation laws, Indiana Univ. Math. J. 24 (1975), 1047-1071. MR 410110
  • 12. R. J. DiPerna, Singularities of solutions of nonlinear hyperbolic systems of conservation laws, Arch. Rational Mech. Anal. 60 (1975), 75-100. MR 393867
  • 13. R. J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 82 (1983), no. 1, 27–70. MR 684413, https://doi.org/10.1007/BF00251724
  • 14. R. J. DiPerna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J. 24 (1975), 1047-1071. MR 410110
  • 15. Björn Engquist and Stanley Osher, One-sided difference approximations for nonlinear conservation laws, Math. Comp. 36 (1981), no. 154, 321–351. MR 606500, https://doi.org/10.1090/S0025-5718-1981-0606500-X
  • 16. H. Federer, Geometric measure theory, Springer, New York, 1969. MR 257325
  • 17. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), 697-715. MR 194770
  • 18. J. Glimm and P. D. Lax, Decay of solutions of systems of nonlinear hyperbolic conservation laws, Mem. Amer. Math. Soc. 101 (1970). MR 265767
  • 19. J. M. Greenberg, Decay theorems for stopping-shock problems, J. Math. Anal. Appl. 50 (1975), 314-324. MR 364882
  • 20. J. M. Greenberg, The Cauchy problem for the quasilinear wave equations (unpublished preprint).
  • 21. A. Harten, J. Hyman and P. D. Lax, On finite-difference approximations and entropy conditions for shocks, Comm. Pure Appl. Math. 29 (1976), 297-322. MR 413526
  • 22. E. Hopf, The partial differential equation u, Comm. Pure Appl. Math. 3 (1950), 201-230. MR 47234
  • 23. A. Jeffrey, Quasilinear hyperbolic systems and waves, Pitman, London, 1976. MR 417585
  • 24. B. Keyfitz, Solutions with shocks, an example of an L1-contractive semi-group, Comm. Pure Appl. 24 (1971), 125-132. MR 271545
  • 25. N. Kruzkov, First order quasilinear equations in several independent variables, Math. USSR-Sb. 10 (1970), 127-243.
  • 26. P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537-566. MR 93653
  • 27. P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS Regional Conf. Ser. Appl. Math., 11, SIAM, Philadelphia, 1973. MR 350216
  • 28. P. D. Lax, The formation and decay of shock waves, Amer. Math. Monthly 79 (1972), 227-241. MR 298252
  • 29. T.-P. Liu, Solutions in the large for the equations of non-isentropic gas dynamics, Indiana Univ. Math. J. 26 (1977), 147-177. MR 435618
  • 30. T.-P. Liu, Initial-boundary value problems for gas dynamics, Arch. Rational Mech. Anal. 64 (1977), 137-168. MR 433017
  • 31. T.-P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys. 57 (1977), 135-148. MR 470508
  • 32. T.-P. Liu, Admissible solutions to systems of conservation laws, Mem. Amer. Math. Soc. 240 (1982).
  • 33. Andrew Majda and Stanley Osher, Numerical viscosity and the entropy condition, Comm. Pure Appl. Math. 32 (1979), no. 6, 797–838. MR 539160, https://doi.org/10.1002/cpa.3160320605
  • 34. Andrew Majda and James Ralston, Discrete shock profiles for systems of conservation laws, Comm. Pure Appl. Math. 32 (1979), no. 4, 445–482. MR 528630, https://doi.org/10.1002/cpa.3160320402
  • 35. A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. MR 748308
  • 36. François Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 3, 489–507 (French). MR 506997
  • 37. T. Nishida, Global solutions for an initial-boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad. 44 (1968), 642-646. MR 236526
  • 38. T. Nishida and J. A. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math. 26 (1973), 183-200. MR 330789
  • 39. O. A. Oleinik, Discontinuous solutions of nonlinear differential equations, Uspekhi Mat. Nauk (N.S.) 12 (1957), no. 3 (75), 3-73; English transl. in Amer. Math. Soc. Transl. (2) 26 (1963), 95-172. MR 151737
  • 40. B. L. Rozhdestvensky and N. N. Yanenko, Quasilinear systems and their applications to the dynamics of gases, "Nauka", Moscow, 1968. (Russian)
  • 41. Luc Tartar, The compensated compactness method applied to systems of conservation laws, Systems of nonlinear partial differential equations (Oxford, 1982) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 111, Reidel, Dordrecht, 1983, pp. 263–285. MR 725524
  • 42. L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston, Mass.-London, 1979, pp. 136–212. MR 584398
  • 43. J. Blake Temple, Solutions in the large for the nonlinear hyperbolic conservation laws of gas dynamics, J. Differential Equations 41 (1981), no. 1, 96–161. MR 626623, https://doi.org/10.1016/0022-0396(81)90055-3
  • 44. Bram van Leer, An introduction to the article “Reminiscences about difference schemes” [J. Comput. Phys. 153 (1999), no. 1, 6–25; MR1703647 (2000h:65121)] by S. K. Godunov, J. Comput. Phys. 153 (1999), no. 1, 1–5. MR 1703646, https://doi.org/10.1006/jcph.1999.6270
  • 45. A. I. Vol'pert, The spaces BV and quasilinear equations, Math. USSR-Sb. 2 (1967), 257-267. MR 216338
  • 46. Ronald J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys. 91 (1983), no. 1, 1–30. MR 719807
  • 47. P. D. Lax, Shock waves and entropy, Contributions to Nonlinear Functional Analysis (F. Zarantonello, ed.), Academic Press, 1971. MR 367471

Review Information:

Reviewer: Ronald J. DiPerna
Journal: Bull. Amer. Math. Soc. 11 (1984), 204-214
DOI: https://doi.org/10.1090/S0273-0979-1984-15271-6
American Mathematical Society