Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Nonlinear analogs of linear group actions on spheres


Author: Reinhard Schultz
Journal: Bull. Amer. Math. Soc. 11 (1984), 263-285
MSC (1980): Primary 57S15, 57S17, 57S25; Secondary 55M35
DOI: https://doi.org/10.1090/S0273-0979-1984-15290-X
MathSciNet review: 752788
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. J. Frank Adams, Graeme Segal’s Burnside ring conjecture, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 201–210. MR 640946, https://doi.org/10.1090/S0273-0979-1982-14979-5
  • 2. Amir H. Assadi, Finite group actions on simply-connected manifolds and CW complexes, Mem. Amer. Math. Soc. 35 (1982), no. 257, x+116. MR 643341, https://doi.org/10.1090/memo/0257
    Amir H. Assadi, Extensions of finite group actions from submanifolds of a disk, Current trends in algebraic topology, Part 2 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 45–66. MR 686139
  • 3. Amir Assadi and William Browder, On the existence and classification of extensions of actions on submanifolds of disks and spheres, Trans. Amer. Math. Soc. 291 (1985), no. 2, 487–502. MR 800249, https://doi.org/10.1090/S0002-9947-1985-0800249-6
  • 4. M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. II: Applications, Ann. of Math. (2) 88 (1968), 451-491. MR 232406
  • 5. M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604. MR 236952
  • 6. R. H. Bing, A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Ann. of Math. (2) 56 (1952), 354-362. MR 49549
  • 7. S. Bochner, Compact groups of differentiable transformations, Ann. of Math. (2) 46 (1945), 372-381. MR 13161
  • 8. A. Borel (Ed.), Seminar on transformation groups, Ann. of Math. Stud. No. 46., Princeton Univ. Press, Princeton, N. J., 1960. MR 116341
  • 9. G. Bredon, Exotic actions on spheres, Proc. Conf. Transformation Groups (New Orleans, 1967), Springer-Verlag, 1968, pp. 47-76. MR 266239
  • 10. G. Bredon, A π Θ* and applications to transformation groups, Ann. of Math. (2) 86 (1967), 434-448.
  • 11. G. Bredon, Representations at fixed points of smooth actions of compact groups, Ann. of Math. (2) 89 (1969), 515-532. MR 246324
  • 12. G. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972. MR 413144
  • 13. G. Bredon, Regular O( n) -manifolds, suspension of knots, and knot periodicity, Bull. Amer. Math. Soc. 79 (1973), 87-91. MR 310901
  • 14. G. Bredon, Biaxial actions of classical groups, unpublished manuscript, Rutgers Univ., 1973.
  • 15. Theodor Bröcker and Klaus Jänich, Introduction to differential topology, Cambridge University Press, Cambridge-New York, 1982. Translated from the German by C. B. Thomas and M. J. Thomas. MR 674117
  • 16. W. Browder, Surgery and the theory of differentiable transformation groups, Proc. Conf. Transformation Groups (New Orleans, 1967), Springer, New York, 1968, pp. 1-46. MR 261629
  • 17. W. Browder and T. Petrie, Diffeomorphisms of manifolds and semifree actions on homotopy spheres, Bull. Amer. Math. Soc. 77 (1971), 160-163. MR 273636
  • 18. Sylvain E. Cappell and Julius L. Shaneson, Nonlinear similarity, Ann. of Math. (2) 113 (1981), no. 2, 315–355. MR 607895, https://doi.org/10.2307/2006986
  • 19. Sylvain E. Cappell and Julius L. Shaneson, Fixed points of periodic differentiable maps, Invent. Math. 68 (1982), no. 1, 1–19. MR 666635, https://doi.org/10.1007/BF01394267
  • 20. S. Cappell and S. Weinberger (to appear).
  • 21. E. C. Cho, s-Smith equivalence for representations of generalized quaternion groups, Ph. D. Thesis, Rutgers Univ., 1984; summarized in Abstracts Amer. Math. Soc. 4 (1983), 546.
  • 22. E. H. Connell, D. Montgomery and C. T. Yang, Compact groups in RO, Ann. of Math. (2) 80 (1964), 94-103; correction, ibid. 81 (1965), 194. MR 162885
  • 23. Pierre E. Conner, Differentiable periodic maps, 2nd ed., Lecture Notes in Mathematics, vol. 738, Springer, Berlin, 1979. MR 548463
  • 24. Michael Davis, Multiaxial actions on manifolds, Lecture Notes in Mathematics, vol. 643, Springer, Berlin, 1978. MR 488195
  • 25. M. Davis, W. C. Hsiang, and W.-y. Hsiang, Differential actions of compact simple Lie groups on homotopy spheres and Euclidean spaces, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 313–323. MR 520508
  • 26. M. Davis and W. C. Hsiang, Concordance classes of regular U(n) and Sp(n) actions on homotopy spheres, Ann. of Math. (2) 105 (1977), 325-341. MR 438368
  • 27. M. Davis, W. C. Hsiang, and J. W. Morgan, Concordance classes of regular 𝑂(𝑛)-actions on homotopy spheres, Acta Math. 144 (1980), no. 3-4, 153–221. MR 573451, https://doi.org/10.1007/BF02392123
  • 28. G. de Rham, Reidemeister's torsion invariants and rotations of S, Differential Analysis (Bombay Colloq., 1963), Oxford Univ. Press, New York, 1964, pp. 27-36.
  • 29. Tammo tom Dieck, Semilinear group actions on spheres: dimension functions, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 448–457. MR 561232
  • 30. Tammo tom Dieck, Homotopy representations of the torus, Arch. Math. (Basel) 38 (1982), no. 5, 459–469. MR 666921, https://doi.org/10.1007/BF01304817
  • 31. Tammo tom Dieck and Ted Petrie, Homotopy representations of finite groups, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 129–169 (1983). MR 686044
  • 32. Ronald M. Dotzel and Gary C. Hamrick, 𝑝-group actions on homology spheres, Invent. Math. 62 (1981), no. 3, 437–442. MR 604837, https://doi.org/10.1007/BF01394253
  • 33. Karl Heinz Dovermann, Even-dimensional 𝑠-Smith equivalent representations, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 587–602. MR 764601, https://doi.org/10.1007/BFb0075589
  • 34. K. H. Dovermann and T. Petrie, Smith equivalence for odd order cyclic groups (in preparation); summarized in Abstracts Amer. Math. Soc. 4 (1983), 476-477.
  • 35. Karl Heinz Dovermann and Melvin Rothenberg, An equivariant surgery sequence and equivariant diffeomorphism and homeomorphism classification (a survey), Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 257–280. MR 585663
  • 36. A. Edmonds and R. Lee, Cyclic group actions on Euclidean space, Topology 14 (1975), 339-345. MR 413146
  • 37. Allan L. Edmonds, Transformation groups and low-dimensional manifolds, Group actions on manifolds (Boulder, Colo., 1983) Contemp. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp. 339–366. MR 780973, https://doi.org/10.1090/conm/036/780973
  • 38. D. Erle and W. C. Hsiang, On certain unitary and symplectic actions with three orbit types, Amer. J. Math. 94 (1972), 289-308. MR 305428
  • 39. J. Ewing, Spheres as fixed point sets, Quart. J. Math. Oxford (2) 27 (1976), 445-455. MR 431233
  • 40. E. E. Floyd, Examples of fixed point sets of periodic maps, Ann. of Math. (2) 55 (1952), 167-171. MR 45379
  • 41. Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), no. 3, 357–453. MR 679066
  • 42. C. H. Giffen, The generalized Smith conjecture, Amer. J. Math. 88 (1966), 187-198. MR 198462
  • 43. C. McA. Gordon, On the higher dimensional Smith conjecture, Proc. London Math. Soc. (3) 29 (1974), 98-110. MR 356073
  • 44. M. W. Hirsch, Differential topology, Graduate Texts in Math., vol. 33, Springer-Verlag, 1976. MR 448362
  • 45. W. C. Hsiang and W. Y. Hsiang, The degree of symmetry of homotopy spheres, Ann. of Math. (2) 89 (1969), 52-67. MR 239621
  • 46. W. C. Hsiang and W. Y. Hsiang, Differentiable actions of compact connected classical groups. I, Amer. J. Math. 89 (1967), 705-786. MR 217213
  • 47. W. C. Hsiang and W. Y. Hsiang, Differentiable actions of compact connected Lie groups. II, III, Ann. of Math. (2) 92 (1970), 189-223; ibid. 99 (1974), 220-256.
  • 48. W. Y. Hsiang, A survey of regularity theorems in differentiable compact transformation groups, Proc. Conf. Transformation Groups (New Orleans, 1967), Springer-Verlag, 1968, pp. 77-124. MR 256416
  • 49. W. Y. Hsiang, On generalizations of the theorem of A. Borel and their applications in the study of topological actions, Topology of Manifolds (Proc. Univ. Georgia Conf., 1969), Markham, Chicago, 1970, pp. 274-290.
  • 50. W. Y. Hsiang, On the degree of symmetry and the structure of highly symmetric manifolds, Tamkang J. Math. 2 (1971), 1-22. MR 309140
  • 51. W. Y. Hsiang, Cohomology theory of topological transformation groups, Ergebnisse Math. Grenzgebiete, Bd. 85, Springer-Verlag, 1975. MR 423384
  • 52. Sören Illman, Recognition of linear actions on spheres, Trans. Amer. Math. Soc. 274 (1982), no. 2, 445–478. MR 675064, https://doi.org/10.1090/S0002-9947-1982-0675064-4
  • 53. L. Jones, The converse to the fixed point theorem of P. A. Smith. I, Ann. of Math. (2) 94 (1971), 52-68. MR 295361
  • 54. L. Jones, The converse to the fixed point theorem of P. A. Smith. II, Indiana Univ. Math. J. 22 (1972), 309-325; correction, ibid. 24 (1975), 1001-1003. MR 339249
  • 55. D. S. Kahn and S. B. Priddy, The transfer and stable homotopy, Math. Proc. Cambridge Philos. Soc. 83 (1978), 103-111. MR 464230
  • 56. M. Kervaire and J. Milnor, Groups of homotopy spheres, Ann. of Math. (2) 77 (1963), 504-537. MR 148075
  • 57. J. Levine, A classification of differentiable knots, Ann. of Math. (2) 82 (1965), 15-50. MR 180981
  • 58. Wen Hsiung Lin, On conjectures of Mahowald, Segal and Sullivan, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 3, 449–458. MR 556925, https://doi.org/10.1017/S0305004100056887
  • 59. W. H. Lin, D. M. Davis, M. E. Mahowald, and J. F. Adams, Calculation of Lin’s Ext groups, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 3, 459–469. MR 569195, https://doi.org/10.1017/S0305004100056899
  • 60. Peter Löffler, Homotopielineare 𝑍_{𝑝}-Operationen auf Sphären, Topology 20 (1981), no. 3, 291–312 (German). MR 608602, https://doi.org/10.1016/0040-9383(81)90004-5
  • 61. T. Matumoto, On G-CW complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 363-374. MR 345103
  • 62. A. Meyerhoff and T. Petrie, Quasiequivalence of G-modules, Topology 15 (1976), 69-75. MR 391141
  • 63. J. Milnor, Introduction to algebraic K-theory, Ann. of Math. Stud., No. 72, Princeton Univ. Press, Princeton, N. J., 1971. MR 349811
  • 64. J. Milnor and J. Stasheff, Characteristic classes, Ann. of Math. Stud., No. 76, Princeton Univ. Press, Princeton, N. J., 1974. MR 440554
  • 65. D. Montgomery and C. T. Yang, Differentiable transformation groups on homotopy spheres, Michigan Math. J. 14 (1967), 33-46. MR 217815
  • 66. John W. Morgan, Actions de groupes finis sur 𝑆³: la conjecture de P. A. Smith (d’après Thurston et Meeks-Yau), Bourbaki Seminar, Vol. 1980/81, Lecture Notes in Math., vol. 901, Springer, Berlin-New York, 1981, pp. 277–289 (French). MR 647502
  • 67. J. R. Munkres, Elementary differential topology, rev. ed., Ann. of Math. Stud., No. 54, Princeton Univ. Press, Princeton, N. J., 1966. MR 198479
  • 68. S. P. Novikov, On manifolds with free abelian fundamental groups and their applications, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 207-246; English transl., Amer. Math. Soc. Transl (2) 71 (1968), 1-42. MR 196765
  • 69. R. Oliver, Fixed point sets of group actions on finite acyclic complexes, Comment. Math. Helv. 50 (1975), 155-177. MR 375361
  • 70. Robert Oliver, Weight systems for 𝑆𝑂(3)-actions, Ann. of Math. (2) 110 (1979), no. 2, 227–241. MR 549488, https://doi.org/10.2307/1971260
  • 71. Robert Oliver and Ted Petrie, 𝐺-CW-surgery and 𝐾₀(𝑍𝐺), Math. Z. 179 (1982), no. 1, 11–42. MR 643044, https://doi.org/10.1007/BF01173912
  • 72. Krzysztof Pawałowski, Fixed points of cyclic group actions on disks, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), no. 12, 1011–1015 (1979) (English, with Russian summary). MR 528987
  • 73. K. Pawalowski, On some problems in compact transformation groups, summarized in Math. Forschungsinst. Oberwolfach Tagungsbericht 35/1982, pp. 11-12.
  • 74. T. Petrie, Free metacyclic group actions on homotopy spheres, Ann. of Math. (2) 94 (1971), 108-124. MR 293667
  • 75. T. Petrie, Equivariant quasiequivalence, transversality, and normal cobordism, Proc. Internat. Congress Math. (Vancouver, B. C, 1974), Canad. Math. Soc. Toronto, 1975, pp. 537-541. MR 431234
  • 76. Ted Petrie, Three theorems in transformation groups, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 549–572. MR 561238
  • 77. Ted Petrie, One fixed point actions on spheres. I, II, Adv. in Math. 46 (1982), no. 1, 3–14, 15–70. MR 676986, https://doi.org/10.1016/0001-8708(82)90052-4
  • 78. Ted Petrie, The equivariant 𝐽 homomorphism and Smith equivalence of representations, Current trends in algebraic topology, Part 2 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 223–233. MR 686148
  • 79. Ted Petrie, Smith equivalence of representations, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 1, 61–99. MR 704803, https://doi.org/10.1017/S0305004100060928
  • 80. Ted Petrie and John Randall, Spherical isotropy representations, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 221–256. MR 823175
  • 81. T. Petrie, Isotropy representations of group actions on disks (in preparation).
  • 82. D. S. Rim, Modules over finite groups, Ann. of Math. (2) 69 (1959), 700-712. MR 104721
  • 83. M. Rothenberg, Differentiable group actions on spheres, Proc. Adv. Study Inst, on Algebraic Topology (Aarhus, 1970), Various Publications Ser., Vol. 13, Mat. Inst., Aarhus Univ., 1970, pp. 455-475. MR 301764
  • 84. Mel Rothenberg, Torsion invariants and finite transformation groups, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 267–311. MR 520507
  • 85. M. Rothenberg and J. Sondow, Nonlinear smooth representations of compact Lie groups, Pacific J. Math. 84 (1979), no. 2, 427–444. MR 568660
  • 86. C. Sánchez, Actions of groups of odd order on compact orientable manifolds, Proc. Amer. Math. Soc. 54 (1976), 445-448. MR 407871
  • 87. R. Schultz, Improved estimates for the degree of symmetry of certain homotopy spheres, Topology 10 (1971), 227-235. MR 283822
  • 88. R. Schultz, Semifree circle actions and the degree of symmetry of homotopy spheres, Amer. J. Math. 93 (1971), 829-839. MR 287548
  • 89. R. Schultz, Semifree circle actions with twisted fixed point sets, Proc. Second Conf. Compact Transformation Groups (Univ. of Massachusetts, Amherst, 1971), Part I, Lecture Notes in Math., vol. 298, Springer-Verlag, 1972, pp. 102-116. MR 362382
  • 90. R. Schultz, Homotopy sphere pairs admitting semifree differentiable actions, Amer. J. Math. 96 (1974), 308-323. MR 368053
  • 91. R. Schultz, Closed curves and circle homomorphisms in groups of diffeomorphisms, Fund. Math. 95 (1977), 141-146. MR 436176
  • 92. Reinhard Schultz, Spherelike 𝐺-manifolds with exotic equivariant tangent bundles, Studies in algebraic topology, Adv. in Math. Suppl. Stud., vol. 5, Academic Press, New York-London, 1979, pp. 1–38. MR 527243
  • 93. R. Schultz, Differentiable actions on homotopy spheres. I: Differential structure and the knot invariant, Invent. Math. 31 (1975), 105-128. MR 405471
  • 94. Reinhard Schultz, Differentiable group actions on homotopy spheres. II. Ultrasemifree actions, Trans. Amer. Math. Soc. 268 (1981), no. 2, 255–297. MR 632531, https://doi.org/10.1090/S0002-9947-1981-0632531-6
  • 95. Reinhard Schultz, Differential group actions on homotopy spheres. III. Invariant subspheres and smooth suspensions, Trans. Amer. Math. Soc. 275 (1983), no. 2, 729–750. MR 682728, https://doi.org/10.1090/S0002-9947-1983-0682728-6
  • 96. R. Schultz, Differentiable actions on homotopy spheres. IV: Formulas for certain normal invariants (in preparation).
  • 97. R. Schultz, Differentiable actions on homotopy spheres. V: Semifree actions on exotic spheres (in preparation).
  • 98. R. Schultz, Differentiable actions on homotopy spheres. VI: Circle actions on exotic spheres through dimension 30 (in preparation).
  • 99. Reinhard Schultz, Smooth actions of small groups on exotic spheres, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 155–160. MR 520503
  • 100. Reinhard Schultz, Isotopy classes of periodic diffeomorphisms on spheres, Algebraic topology, Waterloo, 1978 (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1978) Lecture Notes in Math., vol. 741, Springer, Berlin, 1979, pp. 334–354. MR 557176
  • 101. Reinhard Schultz, Differentiability and the P. A. Smith theorems for spheres. I. Actions of prime order groups, Current trends in algebraic topology, Part 2 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 235–273. MR 686149
  • 102. R. Schultz, Differentiability and the P. A. Smith theorems for spheres. II: Actions of larger groups (in preparation).
  • 103. Reinhard Schultz, Exotic spheres admitting circle actions with codimension four stationary sets, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 339–368. MR 711061, https://doi.org/10.1090/conm/019/711061
  • 104. Reinhard Schultz, Upper bounds for the toral symmetry of certain homotopy spheres, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 645–659. MR 764606, https://doi.org/10.1007/BFb0075594
  • 105. R. Schultz, Almost isovariant homotopy smoothings of compact G-manifolds (in preparation).
  • 106. R. Schultz, Almost extremal torus actions on homotopy spheres (in preparation).
  • 107. R. Schultz, Homotopy invariants for elementary abelian group actions on exotic spheres (in preparation).
  • 108. Reinhard Schultz, Transformation groups and exotic spheres, Group actions on manifolds (Boulder, Colo., 1983) Contemp. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp. 243–267. MR 780966, https://doi.org/10.1090/conm/036/780966
  • 109. Reinhard Schultz (ed.), Group actions on manifolds, Contemporary Mathematics, vol. 36, American Mathematical Society, Providence, RI, 1985. MR 780951
  • 110. G. Segal, Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129-151. MR 234452
  • 111. A. Siegel, Fixed point representations of group actions on spheres, Ph.D. Thesis, Rutgers Univ., 1982.
  • 112. P. A. Smith, New results and old problems in finite transformation groups, Bull. Amer. Math. Soc. 66(1960), 401-415. MR 125581
  • 113. R. Stong, Complex and oriented equivariant bordism, Topology of Manifolds (Proc. Univ. of Georgia Conf., 1969), Markham, Chicago, 1970, pp. 291-316. MR 273644
  • 114. D. Y. Suh, s-Smith equivalence for finite abelian groups, Ph.D. Thesis, Rutgers Univ., 1984; summarized in Abstracts Amer. Math. Soc. 4 (1983), 548.
  • 115. R. W. Sullivan, Differentiable actions of classical groups on spheres, Topology 9 (1970), 155-167. MR 261631
  • 116. R. W. Sullivan, Linear models for compact group actions on spheres, Topology 13 (1974), 77-87. MR 339245
  • 117. R. Swan, Periodic resolutions for finite groups, Ann. of Math. (2) 72 (1960), 267-291. MR 124895
  • 118. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Stud., No. 49, Princeton Univ. Press, Princeton, N. J., 1962. MR 143217
  • 119. Y. D. Tsai, Isotropy representations of nonabelian groups on disks, Ph.D. Thesis, Rutgers Univ., 1984; summarized in Abstracts Amer. Math. Soc. 4 (1983), 545.
  • 120. C. T. C. Wall, Surgery on compact manifolds, London Math. Soc. Monographs, vol. 1, Academic Press, New York, 1970. MR 431216
  • 121. S. Weinberger, Homologically trivial group actions. I, (preprint).
  • 122. J. A. Wolf, Spaces of constant curvature, 4th. ed., Publish or Perish, Berkeley, Calif., 1977.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 57S15, 57S17, 57S25, 55M35

Retrieve articles in all journals with MSC (1980): 57S15, 57S17, 57S25, 55M35


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1984-15290-X

American Mathematical Society