Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Secondary classes and transverse measure theory of a foliation


Authors: S. Hurder and A. Katok
Journal: Bull. Amer. Math. Soc. 11 (1984), 347-350
MSC (1980): Primary 46L10, 57R30, 58F11
DOI: https://doi.org/10.1090/S0273-0979-1984-15301-1
MathSciNet review: 752795
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. Alain Connes, Sur la théorie non commutative de l’intégration, Algèbres d’opérateurs (Sém., Les Plans-sur-Bex, 1978) Lecture Notes in Math., vol. 725, Springer, Berlin, 1979, pp. 19–143 (French). MR 548112
  • 2. A. Connes, Cyclic cohomology and the transverse fundamental class of a foliation, Geometric methods in operator algebras (Kyoto, 1983) Pitman Res. Notes Math. Ser., vol. 123, Longman Sci. Tech., Harlow, 1986, pp. 52–144. MR 866491
  • 3. A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynamical Systems 1 (1981), no. 4, 431–450 (1982). MR 662736
  • 4. G. Duminy, L'invariant de Godbillon-Vey d'un feuilletage se localise dans les feuilles ressort, 1982 (preprint).
  • 5. J. Heitsch and S. Hurder, Secondary classes, Weil measures and the geometry of foliations, J. Differential Geom. 20 (1984), no. 2, 291–309. MR 788282
  • 6. S. Hurder, The Godbillon measure of amenable foliations, J. Differential Geom. 23 (1986), no. 3, 347–365. MR 852160
  • 7. Steven Hurder, The classifying space of smooth foliations, Illinois J. Math. 29 (1985), no. 1, 108–133. MR 769761
  • 8. Steven Hurder, Foliation dynamics and leaf invariants, Comment. Math. Helv. 60 (1985), no. 2, 319–335. MR 800011, https://doi.org/10.1007/BF02567418
  • 9. S. Hurder, Characteristic classes of flat Diff X-bundles, 1984 (preprint).
  • 10. S. Hurder and A. Katok, Ergodic theory and Weil measures for foliations, Ann. of Math. (2) 126 (1987), no. 2, 221–275. MR 908148, https://doi.org/10.2307/1971401
  • 11. Franz W. Kamber and Philippe Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Mathematics, Vol. 493, Springer-Verlag, Berlin-New York, 1975. MR 0402773
  • 12. A Katok, Ergodic theorems and ε-classification of cocycles over dynamical systems (in preparation).
  • 13. Calvin C. Moore, Ergodic theory and von Neumann algebras, Operator algebras and applications, Part 2 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 179–226. MR 679505
  • 14. Robert J. Zimmer, Induced and amenable ergodic actions of Lie groups, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 3, 407–428. MR 521638

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 46L10, 57R30, 58F11

Retrieve articles in all journals with MSC (1980): 46L10, 57R30, 58F11


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1984-15301-1