Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: I. A. Ibragimov and R. Z. Has′minskii
Title: Statistical estimation, asymptotic theory
Additional book information: Applications of Mathematics, vol. 16, Springer-Verlag, New York, 1981, vii + 403 pp., $42.00. ISBN 0-3879-0523-5.

Author: J. Pfanzagl
Title: Contributions to a general asymptotic statistical theory
Additional book information: (with the assistance of W. Wefelmeyer), Lecture Notes in Statistics, vol. 13, Springer-Verlag, New York, 1982, vii + 315 pp., $16.80. ISBN 0-3879-0776-9.

References [Enhancements On Off] (What's this?)

  • Masafumi Akahira and Kei Takeuchi, Asymptotic efficiency of statistical estimators: concepts and higher order asymptotic efficiency, Lecture Notes in Statistics, vol. 7, Springer-Verlag, New York-Berlin, 1981. MR 617375
  • Patrice Assouad, Deux remarques sur l’estimation, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 23, 1021–1024 (French, with English summary). MR 777600
  • Ishwar V. Basawa and B. L. S. Prakasa Rao, Statistical inference for stochastic processes, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. Probability and Mathematical Statistics. MR 586053
  • Ishwar V. Basawa and David John Scott, Asymptotic optimal inference for nonergodic models, Lecture Notes in Statistics, vol. 17, Springer-Verlag, New York-Berlin, 1983. MR 688650
  • Rudolf Beran, Asymptotically efficient adaptive rank estimates in location models, Ann. Statist. 2 (1974), 63–74. MR 0345295
  • P. J. Bickel, On adaptive estimation, Ann. Statist. 10 (1982), no. 3, 647–671. MR 663424
  • L. Birgé (1983), On estimating a density using Bellinger distance and some other strange facts, MSRI Report 045-83.
  • G. Bouligand (1932), Introduction à la géométrie infinitésimale directe, Gauthier-Villars, Paris.
  • Herman Chernoff, On the distribution of the likelihood ratio, Ann. Math. Statistics 25 (1954), 573–578. MR 0065087
  • Václav Fabian and James Hannan, On estimation and adaptive estimation for locally asymptotically normal families, Z. Wahrsch. Verw. Gebiete 59 (1982), no. 4, 459–478. MR 656510,
  • R. A. Fisher (1922), On the mathematical foundations of theoretical statistics, Philos. Trans. Roy. Soc. London Ser. A. 222, 309-368.
  • R. A. Fisher (1925), Theory of statistical estimation, Proc. Cambridge Philos. Soc. 22, 700-725.
  • David A. Freedman, On the asymptotic behavior of Bayes’ estimates in the discrete case, Ann. Math. Statist. 34 (1963), 1386–1403. MR 0158483,
  • Ulf Grenander, Abstract inference, John Wiley & Sons, Inc., New York, 1981. Wiley Series in Probability and Mathematical Statistics. MR 599175
  • Jaroslav Hájek, Local asymptotic minimax and admissibility in estimation, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 175–194. MR 0400513
  • Jaroslav Hájek and Zbyněk Šidák, Theory of rank tests, Academic Press, New York-London; Academia Publishing House of the Czechoslovak Academy of Sciences, Prague, 1967. MR 0229351
  • P. Hall and C. C. Heyde, Martingale limit theory and its application, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. Probability and Mathematical Statistics. MR 624435
  • P. Jeganathan (1980), Asymptotic theory of estimation when the limit of the loglikelihood ratios is mixed normal, Thesis, Indian Statist. Inst. Calcutta.
  • Yu. A. Koshevnik and B. Ya. Levit (1976), On a non-parametric analogue of the information matrix, Theory Probab. Appl. 21, 738-753.
  • P. Laplace (1809-1810), Approximation des formules qui sont fonctions de très grands nombres et leur application aux probabilities, Mémoires de l'Académie des Sciences, vol. 10.
  • Lucien Le Cam, Locally asymptotically normal families of distributions. Certain approximations to families of distributions and their use in the theory of estimation and testing hypotheses, Univ. california Publ. Statist. 3 (1960), 37–98. MR 0126903
  • E. L. Lehmann, Nonparametrics: statistical methods based on ranks, Holden-Day, Inc., San Francisco, Calif.; McGraw-Hill International Book Co., New York-Düsseldorf, 1975. With the special assistance of H. J. M. d’Abrera; Holden-Day Series in Probability and Statistics. MR 0395032
  • P. W. Millar, Asymptotic minimax theorems for the sample distribution function, Z. Wahrsch. Verw. Gebiete 48 (1979), no. 3, 233–252. MR 537670,
  • P. W. Millar, Nonparametric applications of an infinite-dimensional convolution theorem, Z. Wahrsch. Verw. Gebiete 68 (1985), no. 4, 545–556. MR 772198,
  • W. Moussatat (1976), On the asymptotic theory of statistical experiments and some of its applications, Thesis, Univ. of California, Berkeley.
  • J. Pfanzagl, Asymptotic expansions in parametric statistical theory, Developments in statistics, Vol. 3, Academic Press, New York-London, 1980, pp. 1–97. MR 597897
  • Robert J. Serfling, Approximation theorems of mathematical statistics, John Wiley & Sons, Inc., New York, 1980. Wiley Series in Probability and Mathematical Statistics. MR 595165
  • S. Saks (1937), Theory of the integral, 2nd ed., Hafner, New York.
  • Charles Stein, Efficient nonparametric testing and estimation, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. I, University of California Press, Berkeley and Los Angeles, 1956, pp. 187–195. MR 0084921
  • Abraham Wald, Tests of statistical hypotheses concerning several parameters when the number of observations is large, Trans. Amer. Math. Soc. 54 (1943), 426–482. MR 0012401,

Review Information:

Reviewer: Lucien Le Cam
Journal: Bull. Amer. Math. Soc. 11 (1984), 392-400