Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

Five short stories about the cardinal series


Author: J. R. Higgins
Journal: Bull. Amer. Math. Soc. 12 (1985), 45-89
MSC (1980): Primary 41A05, 42C10; Secondary 41-03, 01A55, 42B99, 42C30, 94-03, 01A60, 94A05
MathSciNet review: 766960
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • A. V. Balakrishnan (1957), A note on the sampling principle for continuous signals, IRE Trans. Inform. Theory IT-3, 143-146.
  • A. B. Bhatia and K. S. Krishnan, Light-scattering in homogeneous media regarded as reflexion from appropriate thermal elastic waves, Proc. Roy. Soc. London. Ser. A. 192 (1948), 181–194. MR 0025612 (10,35e)
  • C. Bigelow and D. Day (1983), Digital typography, Scientific American (2) 249, 94-105.
  • H. S. Black (1953), Modulation theory, van Nostrand, Princeton, N. J.
  • V. Blažek (1974), Sampling theorem and the number of degrees of freedom of an image, Optics Comm. 11, 144-147.
  • V. Blažek (1976), Optical information processing by the Fabry-Perot resonator, Optical Quantum Electronics 8, 237-240.
  • Ralph Philip Boas Jr., Entire functions, Academic Press Inc., New York, 1954. MR 0068627 (16,914f)
  • R. P. Boas Jr., Summation formulas and band-limited signals, Tôhoku Math. J. (2) 24 (1972), 121–125. Collection of articles dedicated to Gen-ichir\cflex o Sunouchi on his sixtieth birthday. MR 0330915 (48 #9252)
  • R. P. Boas Jr. and H. Pollard, Continuous analogues of series, Amer. Math. Monthly 80 (1973), 18–25. MR 0315354 (47 #3903)
  • F. E. Bond and C. R. Cahn (1958), On sampling the zeros of bandwidth limited signals, IRE Trans. Inform. Theory IT-4, 110-113.
  • E. Borel (1897), Sur l'interpolation, C. R. Acad. Sci. Paris 124, 673-676.
  • E. Borel (1898), Sur la recherche des singularités d'une fonction définie par un développement de Taylor, C. R. Acad. Sci. Paris 127, 1001-1003.
  • Emile Borel, Mémoire sur les séries divergentes, Ann. Sci. École Norm. Sup. (3) 16 (1899), 9–131 (French). MR 1508965
  • J. L. Brown Jr., On the error in reconstructing a non-bandlimited function by means of the bandpass sampling theorem, J. Math. Anal. Appl. 18 (1967), 75–84. MR 0204952 (34 #4787)
  • J. L. Brown, Jr. (1980), First order sampling of bandpass signalsa new approach, IEEE Trans. Inform. Theory IT-26, 613-615.
  • John L. Brown Jr., Multichannel sampling of low-pass signals, IEEE Trans. Circuits and Systems 28 (1981), no. 2, 101–106. MR 600953 (82b:94015), http://dx.doi.org/10.1109/TCS.1981.1084954
  • T. A. Brown (1915-1916), Fourier's integral, Proc. Edinburgh Math. Soc. 34, 3-10.
  • H. Burkhardt (1899-1916), Trigonometrische Interpolation, Enzyklopädie Math. Wiss. IIA9a, Teubner, Leipzig.
  • P. L. Butzer, A survey of the Whittaker-Shannon sampling theorem and some of its extensions, J. Math. Res. Exposition 3 (1983), no. 1, 185–212. MR 724869 (85h:94007)
  • P. L. Butzer and W. Engels, Dyadic calculus and sampling theorems for functions with multidimensional domain. I. General theory, Inform. and Control 52 (1982), no. 3, 333–351. MR 707580 (84k:94003a), http://dx.doi.org/10.1016/S0019-9958(82)90806-3
  • Paul L. Butzer and Rolf J. Nessel, Fourier analysis and approximation, Academic Press, New York, 1971. Volume 1: One-dimensional theory; Pure and Applied Mathematics, Vol. 40. MR 0510857 (58 #23312)
  • P. L. Butzer and W. Splettstösser (1977), Approximation und interpolation durch verallgemeinerte Abtastsummen, Westdeutscher Verlag, Opladen.
  • P. L. Butzer and R. L. Stens, The Euler-MacLaurin summation formula, the sampling theorem, and approximate integration over the real axis, Linear Algebra Appl. 52/53 (1983), 141–155. MR 709348 (85b:65017), http://dx.doi.org/10.1016/0024-3795(83)80011-1
  • L. L. Campbell, Sampling theorem for the Fourier transform of a distribution with bounded support, SIAM J. Appl. Math. 16 (1968), 626–636. MR 0227692 (37 #3276)
  • M. L. Cartwright (1936), On certain integral functions of order one, Quart. J. Math. Oxford Ser. 7, 46-55.
  • A. L. Cauchy (1841), Mémoire sur diverses formules d'analyse, C. R. Acad. Sci. Paris 12, 283-298.
  • P. Cazzaniga (1882), Esspressione di funzioni intere che in posti dati arbitrariamente prendono valori prestabiliti, Ann. Mat. Pura Appl. (2) 10, 278-290.
  • D. K. Cheng and D. L. Johnson, Walsh transform of sampled time functions and the sampling principle, Proc. IEEE 61 (1973), 674–675. MR 0345697 (49 #10428)
  • Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 0447954 (56 #6264), http://dx.doi.org/10.1090/S0002-9904-1977-14325-5
  • W. L. Ferrar (1925), On the cardinal function of interpolation-theory, Proc. Roy. Soc. Edinburgh 45, 267-282.
  • W. L. Ferrar (1926), On the cardinal function of interpolation-theory, Proc. Roy. Soc. Edinburgh 46, 323-333.
  • L. J. Fogel (1955), A note on the sampling theorem, IRE Trans. Inform. Theory 1, 47-48.
  • C. F. Gauss (1900), Carl Friedrich Gauss Werke, Band 8, Königl. Gesellschaft Wiss. Gottingen, Teubner, Leipzig.
  • Stanford Goldman, Information theory, Prentice-Hall Inc., New York, 1953. MR 0064349 (16,269c)
  • E. A. Gonzáles-Velasco and E. Sanvicente (1980), The analytic representation of bandpass signals, J. Franklin Inst. 310, 135-142.
  • R. P. Gosselin, On the 𝐿^{𝑝} theory of cardinal series, Ann. of Math. (2) 78 (1963), 567–581. MR 0156154 (27 #6086)
  • R. P. Gosselin, Singular integrals and cardinal series, Studia Math. 44 (1972), 39–45. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I. MR 0320824 (47 #9357)
  • M. Guichard (1884), Sur les fonctions entières, Ann, Sci. École Norm. Sup. (3) 1, 427-432.
  • J. Hadamard (1901), La série de Taylor et son prolongement analytique, Scientia 12, 1-100.
  • A. H. Haddad, K. Yao and J. B. Thomas (1967), General methods for the derivation of sampling theorems, IEEE Trans. Inform. Theory IT-13, 227-230.
  • G. H. Hardy, Notes on special systems of orthogonal functions. IV. The orthogonal functions of Whittaker’s cardinal series, Proc. Cambridge Philos. Soc. 37 (1941), 331–348. MR 0005145 (3,108b)
  • J. R. Higgins, An interpolation series associated with the Bessel-Hankel transform, J. London Math. Soc. (2) 5 (1972), 707–714. MR 0320616 (47 #9152)
  • J. R. Higgins, A sampling theorem for irregularly spaced sample points, IEEE Trans. Information Theory IT-22 (1976), no. 5, 621–622. MR 0416736 (54 #4805)
  • John Rowland Higgins, Completeness and basis properties of sets of special functions, Cambridge University Press, Cambridge, 1977. Cambridge Tracts in Mathematics, Vol. 72. MR 0499341 (58 #17240)
  • I. I. Hirschman (1964), Review of "On the L, Math. Rev. 27 # 6086, 1163.
  • D. L. Jagerman and L. J. Fogel (1956), Some general aspects of the sampling theorem, IEEE Trans. Inform. Theory 2, 139-156.
  • A. J. Jerri (1977), The Shannon sampling theoremits various extensions and applications: a tutorial review, Proc. IEEE 65, 1565-1596.
  • P. E. B. Jourdain (1905), On the general theory of functions, J. Reine Angew. Math. 128, 169-210.
  • S. C. Kak (1970), Sampling theorem in Walsh-Fourier analysis, Electronics Lett. 6, 447-448.
  • Masahiko Kawamura and Sueo Tanaka, Proof of sampling theorem in sequency analysis using extended Walsh functions, Systems-Comput.-Controls 9 (1978), no. 5, 10–15 (1980). MR 589857 (81i:94004)
  • Y. I. Khurgin and V. P. Yakovlev (1977), Progress in the Soviet Union on the theory and applications of bandlimited functions, Proc. IEEE 65, 1005-1029.
  • Igor Kluvánek, Sampling theorem in abstract harmonic analysis, Mat.-Fyz. Časopis Sloven. Akad. Vied 15 (1965), 43–48 (English, with Russian summary). MR 0188717 (32 #6153)
  • Igor Kluvánek, Positive-definite signals with maximal energy, J. Math. Anal. Appl. 39 (1972), 580–585. MR 0313719 (47 #2273)
  • Arthur Kohlenberg, Exact interpolation of band-limited functions, J. Appl. Phys. 24 (1953), 1432–1436. MR 0060630 (15,700b)
  • A. N. Kolmogorov (1956), On the Shannon theory of information transmission in the case of continuous signals, IRE Trans. Inform. Theory IT-2, 102-108.
  • A. N. Kolmogorov and V. M. Tihomirov (1960), ε-Entropie und ε-Kapazität von Mengen in Funktional Räumen, Math. Forschungsberichte 10, VEB Deutscher Verlag Wiss., Berlin. (Translated from the Russian)
  • V. A. Kotel'nikov (1933), On the carrying capacity of the "ether" and wire in telecommunications, Material for the First All-Union Conference on Questions of Communication, Izd. Red. Upr. Svyazi RKKA, Moscow. (Russian)
  • H. P. Kramer, A generalized sampling theorem, J. Math. and Phys. 38 (1959/60), 68–72. MR 0103786 (21 #2550)
  • Henry P. Kramer, The digital form of operators on band-limited functions, J. Math. Anal. Appl. 44 (1973), 275–287. MR 0329744 (48 #8085)
  • H. J. Landau (1967a), Sampling, data transmission, and the Nyquist rate, Proc. IEEE 55, 1701-1706.
  • H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967), 37–52. MR 0222554 (36 #5604)
  • H. J. Landau and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. The dimension of the space of essentially time- and band-limited signals., Bell System Tech. J. 41 (1962), 1295–1336. MR 0147686 (26 #5200)
  • D. A. Linden (1959), A discussion of sampling theorems, Proc. IRE 47, 1219-1226.
  • D. A. Linden and N. M. Abramson, A generalization of the sampling theorem, Information and Control 3 (1960), 26–31. MR 0110592 (22 #1468)
  • H. D. Lüke (1978), Zur Entstehung des Abtasttheorems, Nachr. Techn. Z. 31, 271-274.
  • A. J. Macintyre (1938), Laplace's transformation and integral functions, Proc. London Math. Soc. 45, 1-20.
  • Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni, Formulas and theorems for the special functions of mathematical physics, Third enlarged edition. Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966. MR 0232968 (38 #1291)
  • M. Maqusi (1972), Walsh functions and the sampling principle, Proc. Walsh Functions Sympos., U. S. Naval Research Lab.
  • E. Masry (1982), The application of random reference sequences to the reconstruction of clipped differentiable signals, IEEE Trans. Acoust. Speech Signal Process. ASSP-30, 953-963.
  • F. C. Mehta, Sampling expansion for band-limited signals through some special functions, J. Cybernet. 5 (1975), no. 2, 61–68 (1976). MR 0416739 (54 #4808)
  • R. M. Mersereau (1979), The processing of hexagonally sampled two dimensional signals, Proc. IEEE 67, 930-949.
  • R. M. Mersereau and T. C. Speake (1983), The processing of periodically sampled multidimensional signals, IEEE Trans. Acoust. Speech Signal Process. ASSP-31, 188-194.
  • Herbert Meschkowski, Hilbertsche Räume mit Kernfunktion, Die Grundlehren der mathematischen Wissenschaften, Bd. 113, Springer-Verlag, Berlin, 1962 (German). MR 0140912 (25 #4326)
  • Dale H. Mugler, Convolution, differential equations, and entire functions of exponential type, Trans. Amer. Math. Soc. 216 (1976), 145–197. MR 0387587 (52 #8427), http://dx.doi.org/10.1090/S0002-9947-1976-0387587-3
  • Dale H. Mugler, The discrete Paley-Wiener theorem, J. Math. Anal. Appl. 75 (1980), no. 1, 172–179. MR 576282 (81m:30052), http://dx.doi.org/10.1016/0022-247X(80)90314-5
  • Jacques Neveu, Le problème de l’échantillonnage et de l’interpolation d’un signal, C. R. Acad. Sci. Paris 260 (1965), 49–51 (French). MR 0172732 (30 #2951)
  • K. Ogura (1920), On some central difference formulas of interpolation, Tôhoku Math. J. 17, 232-241.
  • Fritz Oberhettinger, Tabellen zur Fourier Transformation, Springer-Verlag, Berlin, 1957 (German). MR 0081997 (18,481a)
  • A. Papoulis (1968), Systems and transforms with applications in optics, McGraw-Hill, New York.
  • E. Parzen (1956), A simple proof and some extensions of sampling theorems, Tech. Rep. 7, Stanford Univ., Stanford.
  • D. P. Petersen (1963), Sampling of space-time stochastic processes with application to information and design systems, Thesis, Rensselaer Polytechnic Inst., Troy, N. Y.
  • Daniel P. Petersen and David Middleton, Sampling and reconstruction of wave-number-limited functions in 𝑁-dimensional Euclidean spaces, Information and Control 5 (1962), 279–323. MR 0151331 (27 #1317)
  • F. Pichler (1973), Walsh functions—introduction to the theory, Signal Processing (Proc. NATO Advanced Study Inst. Signal Processing, J. W. R. Griffiths et al., eds.), Academic Press, London and New York, pp. 23-41.
  • S.-D. Poisson (1820), Mémoire sur la manière d'exprimer les fonctions, par des séries de quantités périodiques, et sur l'usage de cette transformation dans la résolution de différens problèmes, J. École Roy. Polytechnique 11, 417-489.
  • G. Pólya (1931), Aufgabe 105, Jahresber. Deutsch. Math.-Verein. 40, 80.
  • Reese T. Prosser, A multidimensional sampling theorem, J. Math. Anal. Appl. 16 (1966), 574–584. MR 0202496 (34 #2365)
  • C. Ryavec, A nonlinear analogue of the cardinal series, Quart. J. Math. Oxford Ser. (2) 30 (1979), no. 118, 223–227. MR 534834 (80g:10036), http://dx.doi.org/10.1093/qmath/30.2.223
  • C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948), 379–423, 623–656. MR 0026286 (10,133e)
  • Claude E. Shannon, Communication in the presence of noise, Proc. I.R.E. 37 (1949), 10–21. MR 0028549 (10,464e)
  • I. Someya (1949), Waveform transmission, Shukyo, Tokyo.
  • B. Spain, Interpolated derivatives, Proc. Roy. Soc. Edinburgh 60 (1940), 134–140. MR 0001779 (1,296e)
  • B. Spain, Interpolated derivatives, Proc. Edinburgh Math. Soc. (2) 9 (1958), 166–167. MR 0114098 (22 #4925)
  • W. Splettstösser (1980), Error analysis in the Walsh sampling theorem, IEEE Sympos. Electromagnetic Computibility, Baltimore. Inst, for Electrical and Electronics Engineers, Service Center, Piscataway, N. J., pp. 366-370.
  • Wolfgang Splettstösser, Sampling approximation of continuous functions with multidimensional domain, IEEE Trans. Inform. Theory 28 (1982), no. 5, 809–814. MR 680150 (84a:94011), http://dx.doi.org/10.1109/TIT.1982.1056561
  • W. Splettstösser, R. L. Stens, and G. Wilmes, On approximation by the interpolating series of G. Valiron, Funct. Approx. Comment. Math. 11 (1981), 39–56. MR 692712 (84f:41004)
  • Henry Stark, Sampling theorems in polar coordinates, J. Opt. Soc. Amer. 69 (1979), no. 11, 1519–1525. MR 550983 (81a:68104), http://dx.doi.org/10.1364/JOSA.69.001519
  • H. Stark and C. S. Sarna (1979), Image reconstruction using polar sampling theorems, Appl. Optics 18, 2086-2088.
  • J. F. Steffensen, Über eine Klasse von Ganzen Funktionen und Ihre Anwendung auf die Zahlentheorie, Acta Math. 37 (1914), no. 1, 75–112 (German). MR 1555095, http://dx.doi.org/10.1007/BF02401830
  • R. L. Stens, Error estimates for sampling sums based on convolution integrals, Inform. and Control 45 (1980), no. 1, 37–47. MR 582144 (81j:42009), http://dx.doi.org/10.1016/S0019-9958(80)90857-8
  • M. Theis (1919), Uber eine Interpolations—formeln von de la Vallée Poussin, Math. Z. 3, 93-113.
  • E. C. Titchmarsh, Reciprocal formulae involving series and integrals, Math. Z. 25 (1926), no. 1, 321–347. MR 1544814, http://dx.doi.org/10.1007/BF01283842
  • E. C. Titchmarsh (1926b), The zeros of certain integral functions, Proc. London Math. Soc. 25, 283-302.
  • E. C. Titchmarsh (1948), Introduction to the theory of Fourier integrals, 2nd ed., Clarendon Press, Oxford.
  • L. Tschakaloff (1933), Zweite Losung der Aufgabe 105, Jahresber. Deutsch. Math.-Verein. 43, 11-12.
  • G. Valiron (1925), Sur la formule d'interpolation de Lagrange, Bull. Sci. Math. (2) 49, 181-192; 203-224.
  • Ch.-J. de la Vallée Poussin (1908), Sur la convergence des formules d'interpolation entre ordonnées equidistantes, Acad. Roy. Belg. Bull. Cl. Sci. 1, 319-410.
  • J. D. Weston, The cardinal series in Hilbert space, Proc. Cambridge Philos. Soc. 45 (1949), 335–341. MR 0030026 (10,701d)
  • J. D. Weston, A note on the theory of communication, Philos. Mag. (7) 40 (1949), 449–453. MR 0029124 (10,552d)
  • E. T. Whittaker (1915), On the functions which are represented by the expansions of the interpolation theory, Proc. Roy. Soc. Edinburgh 35, 181-194.
  • J. M. Whittaker (1929a), On the cardinal function of interpolation theory, Proc. Edinburgh Math. Soc. 1, 41-46.
  • J. M. Whittaker (1929b), On the "Fourier theory" of the cardinal function, Proc. Edinburgh Math. Soc. 1, 169-176.
  • J. M. Whittaker (1935), Interpolatory function theory, Cambridge Univ. Press, Cambridge.
  • J. L. Yen (1956), On nonuniform sampling of bandwidth-limited signals, IRE Trans. Circuit Theory CT-3, 251-257.
  • Robert M. Young, An introduction to nonharmonic Fourier series, Pure and Applied Mathematics, vol. 93, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980. MR 591684 (81m:42027)
  • Moshe Zakai, Band-limited functions and the sampling theorem, Information and Control 8 (1965), 143–158. MR 0174403 (30 #4607)
  • W. Ziegler (1981), Haar-Fourier Transformation auf dem R+, Doctoral Diss. Technische Univ. München.
  • A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776 (21 #6498)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 41A05, 42C10, 41-03, 01A55, 42B99, 42C30, 94-03, 01A60, 94A05

Retrieve articles in all journals with MSC (1980): 41A05, 42C10, 41-03, 01A55, 42B99, 42C30, 94-03, 01A60, 94A05


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1985-15293-0
PII: S 0273-0979(1985)15293-0