A threshold for a caricature of the nerve equation
Authors:
H. P. McKean and V. Moll
Journal:
Bull. Amer. Math. Soc. 12 (1985), 255259
MSC (1980):
Primary 35K55, 35Q20; Secondary 92A09
DOI:
https://doi.org/10.1090/S027309791985153674
MathSciNet review:
776480
Fulltext PDF
References  Similar Articles  Additional Information

H. Cohen, Mathematical developments in HodgkinHuxley theory and its approximations, Lectures Math. Life Sci., Vol. 8, Amer. Math. Soc., Providence, R.I., 1976, pp. 89124. MR 469315
 John A. Feroe, Traveling waves of infinitely many pulses in nerve equations, Math. Biosci. 55 (1981), no. 34, 189–203. MR 627953, https://doi.org/10.1016/00255564(81)90095X

P. Fife and J. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rational Mech. Anal. 65 (1977), 335361. MR 442480

R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1 (1961), 445466.

R. Fitzhugh, Mathematical models of excitation and propagation in nerve, Biological Engineering (H. Schwan, ed.), 1969, pp. 185.

K. Hadeler, Nonlinear diffusion equations in biology, Lect. Notes in Math. 564 (1976), 163206. MR 526382

A. L. Hodgkin, The conduction of the nervous impulse, Liverpool Univ. Press, Liverpool, 1971.

A. L. Hodgkin and A. F. Huxley, A qualitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117 (1952), 500544.

H. P. McKean, Nagumo's equation, Adv. in Math. 4 (1970), 209223. MR 260438
 H. P. McKean, Stabilization of solutions of a caricature of the FitzHughNagumo equation. II, Comm. Pure Appl. Math. 37 (1984), no. 3, 299–301. MR 739922, https://doi.org/10.1002/cpa.3160370303

J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE 50 (1964), 20612070.

J. Rinzel, Simple equations for active nerve condition and passive neuronal integration, Lectures Math. Life Sci., Vol. 8, Amer. Math. Soc., Providence, R.I., 1976, pp. 125164. MR 469324
 David Terman, Threshold phenomena for a reactiondiffusion system, J. Differential Equations 47 (1983), no. 3, 406–443. MR 692838, https://doi.org/10.1016/00220396(83)900438
 David Terman, A free boundary problem arising from a bistable reactiondiffusion equation, SIAM J. Math. Anal. 14 (1983), no. 6, 1107–1129. MR 718812, https://doi.org/10.1137/0514086
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 35K55, 35Q20, 92A09
Retrieve articles in all journals with MSC (1980): 35K55, 35Q20, 92A09
Additional Information
DOI:
https://doi.org/10.1090/S027309791985153674