Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

 

Gauss' class number problem for imaginary quadratic fields


Author: Dorian Goldfeld
Journal: Bull. Amer. Math. Soc. 13 (1985), 23-37
MSC (1980): Primary 12A50, 12A25; Secondary 12-03
MathSciNet review: 788386
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. A. Baker, Linear forms in the logarithms of algebraic numbers. IV, Mathematika 15 (1968), 204–216. MR 0258756 (41 #3402)
  • 2. A. Baker, Imaginary quadratic fields with class number 2, Ann. of Math. (2) 94 (1971), 139–152. MR 0299583 (45 #8631)
  • 3. B. J. Birch, Diophantine analysis and modular functions, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 35–42. MR 0258832 (41 #3478)
  • 4. B. J. Birch and N. M. Stephens, Heegner’s construction of points on the curve 𝑦²=𝑥³-1728𝑒³, Seminar on number theory, Paris 1981–82 (Paris, 1981/1982) Progr. Math., vol. 38, Birkhäuser Boston, Boston, MA, 1983, pp. 1–19. MR 729156 (85j:11062), http://dx.doi.org/10.1007/BF02591848
  • 5. B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II, J. Reine Angew. Math. 218 (1965), 79–108. MR 0179168 (31 #3419)
  • 6. S. Chowla, The Heegner-Stark-Baker-Deuring-Siegel theorem, J. Reine Angew. Math. 241 (1970), 47–48. MR 0258762 (41 #3408)
  • 7. Harold Davenport, Multiplicative number theory, 2nd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York-Berlin, 1980. Revised by Hugh L. Montgomery. MR 606931 (82m:10001)
  • 8. Max Deuring, Imaginäre quadratische Zahlkörper mit der Klassenzahl 1, Math. Z. 37 (1933), no. 1, 405–415 (German). MR 1545403, http://dx.doi.org/10.1007/BF01474583
  • 9. Max Deuring, Imaginäre quadratische Zahlkörper mit der Klassenzahl Eins, Invent. Math. 5 (1968), 169–179 (German). MR 0228464 (37 #4044)
  • 10. L. Dirichlet, Recherches sur diverse applications de l'analyse infinitésimale à la théorie des nombres, J. Reine Angew. Math. 19 (1839); ibid. 21 (1840).
  • 11. L. Euler, Mém. de Berlin, année 1722, 36; Comm. Arith. 1, 584.
  • 12. C. F. Gauss, Disquisitiones arithmeticae, 1801.
  • 13. A. O. Gel′fond, Transcendental and algebraic numbers, Translated from the first Russian edition by Leo F. Boron, Dover Publications, Inc., New York, 1960. MR 0111736 (22 #2598)
  • 14. Dorian Goldfeld, An asymptotic formula relating the Siegel zero and the class number of quadratic fields, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 4, 611–615. MR 0404212 (53 #8015)
  • 15. Dorian M. Goldfeld, A simple proof of Siegel’s theorem, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 1055. MR 0344222 (49 #8962)
  • 16. Dorian M. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 4, 624–663. MR 0450233 (56 #8529)
  • 17. Dorian M. Goldfeld, The conjectures of Birch and Swinnerton-Dyer and the class numbers of quadratic fields, Journées Arithmétiques de Caen (Univ. Caen, Caen, 1976) Soc. Math. France, Paris, 1977, pp. 219–227. Astérisque No. 41–42. MR 0447176 (56 #5491)
  • 18. Benedict Gross and Don Zagier, Points de Heegner et dérivées de fonctions 𝐿, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 2, 85–87 (French, with English summary). MR 720914 (85d:11062)
  • 19. H. Hasse, Beweis analogous der Riemannschen Vermutung für die Artinsche und F. K. Schmidtschen Kongruenz-zetafunktionen in gewisse elliptischen Fallen, Nachr. Akad. Wiss. Göttingen (1933), 253-262.
  • 20. Kurt Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227–253 (German). MR 0053135 (14,725j)
  • 21. H. Heilbronn, On the class number in imaginary quadratic fields, Quart. J. Math. Oxford Ser. 2 5 (1934), 150-160.
  • 22. H. Heilbronn and E. H. Linfoot, On the imaginary quadratic corpora of class number one, Quart. J. Math. Oxford Ser 2 5 (1934), 293-301.
  • 23. Jeffrey Hoffstein, On the Siegel-Tatuzawa theorem, Acta Arith. 38 (1980/81), no. 2, 167–174. MR 604232 (82k:10050)
  • 24. C. G. J. Jacobi, J. Math. 9 (1832), 189-192.
  • 25. E. Landau, Über die Klassenzahl der binären quadratischen Formen von negativer Discriminante, Math. Ann. 56 (1902), 671-676.
  • 26. E. Landau, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Göttinger Nachr. (1918), 285-295.
  • 27. J. L. Lagrange, Recherches d'arithmétique, Nouv. Mém. Acad. Berlin (1773), 265-312; Oeuvres, III, pp. 693-758.
  • 28. A. M. Legendre, Théorie des nombres, Libraire Scientifique A. Hermann, Paris, 1798, pp. 69-76; 2nd éd., 1808, pp. 61-67; 3rd ed., 1830, pp. 72-80.
  • 29. B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). MR 488287 (80c:14015)
  • 30. L. J. Mordell, On the Riemann hypothesis and imaginary quadratic fields with a given class number, J. London Math. Soc. 9 (1934), 289-298.
  • 31. L. J. Mordell, On the rational solutions of the indeterminate equations of the 3rd and 4th degrees, Proc. Camb. Phil. Soc. 21 (1922), 179-192.
  • 32. H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, Acta Arith. 24 (1973/74), 529–542. Collection of articles dedicated to Carl Ludwig Siegel on the occasion of his seventy-fifth birthday, V. MR 0357373 (50 #9841)
  • 33. Joseph Oesterlé, Nombres de classes des corps quadratiques imaginaires, Astérisque 121-122 (1985), 309–323 (French). Seminar Bourbaki, Vol. 1983/84. MR 768967 (86k:11064)
  • 34. G. Rabinovitch, Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern, Proc. Fifth Internat. Congress Math. (Cambridge), vo. I, 1913, pp. 418-421.
  • 35. C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83-86.
  • 36. Carl Ludwig Siegel, Zum Beweise des Starkschen Satzes, Invent. Math. 5 (1968), 180–191 (German). MR 0228465 (37 #4045)
  • 37. H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1–27. MR 0222050 (36 #5102)
  • 38. H. M. Stark, A historical note on complex quadratic fields with class-number one., Proc. Amer. Math. Soc. 21 (1969), 254–255. MR 0237461 (38 #5743), http://dx.doi.org/10.1090/S0002-9939-1969-0237461-X
  • 39. H. M. Stark, On the “gap” in a theorem of Heegner, J. Number Theory 1 (1969), 16–27. MR 0241384 (39 #2724)
  • 40. H. M. Stark, A transcendence theorem for class-number problems, Ann. of Math. (2) 94 (1971), 153–173. MR 0297715 (45 #6767)
  • 41. Tikao Tatuzawa, On a theorem of Siegel, Jap. J. Math. 21 (1951), 163–178 (1952). MR 0051262 (14,452c)
  • 42. A. Weil, Sur un théorème de Mordell, Bull. Sci. Math. (2) 54 (1930), 182-191.
  • 43. André Weil, Sur les fonctions algébriques à corps de constantes fini, C. R. Acad. Sci. Paris 210 (1940), 592–594 (French). MR 0002863 (2,123d)
  • 44. André Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 168 (1967), 149–156 (German). MR 0207658 (34 #7473)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 12A50, 12A25, 12-03

Retrieve articles in all journals with MSC (1980): 12A50, 12A25, 12-03


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1985-15352-2
PII: S 0273-0979(1985)15352-2