Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Homotopy groups of the complements to singular hypersurfaces


Author: A. Libgober
Journal: Bull. Amer. Math. Soc. 13 (1985), 49-51
MSC (1980): Primary 14F20, 57M05, 14H20, 57M10, 14J17, 57M15
DOI: https://doi.org/10.1090/S0273-0979-1985-15360-1
MathSciNet review: 788390
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. Kulkarni and J. Wood, Topology of non-singular complex hypersurfaces, Adv. in Math. 35 (1980), 239-263. MR 563926
  • 2. Lê Dũng Tráng and H. Hamm, Un théorème de Zariski du type de Lefschetz, Ann. Sci. École Norm. Sup. (4) 6 (1973), 317-366. MR 401755
  • 3. A. Libgober, Alexander invariants of plane algebraic curves. Proc. Sympos. Pure Math., vol. 40, part 2, Amer. Math. Soc., Providence, R. I., 1983, pp. 135-143. MR 713242
  • 4. B. Segre, Some properties of differentiable varieties and transformations, Ergeb. Math. Grenzgeb. vol. 13, Springer-Verlag, 1957. MR 89461
  • 5. E. R. van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933). MR 1506962
  • 6. O. Zariski, Algebraic surfaces, Springer-Verlag, 1971. MR 469915

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 14F20, 57M05, 14H20, 57M10, 14J17, 57M15

Retrieve articles in all journals with MSC (1980): 14F20, 57M05, 14H20, 57M10, 14J17, 57M15


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1985-15360-1

American Mathematical Society