CONTINUED FRACTALS AND THE SEIFERT CONJECTURE

BY JENNY HARRISON

In 1950 Herbert Seifert posed a question today known as the Seifert Conjecture:

“Every \(C^r \) vector field on the three-sphere has either a zero or a closed integral curve.”

Paul Schweitzer published his celebrated \(C^1 \) counterexample in 1971 [Sch]. We show how to obtain a \(C^{3-\varepsilon} \) counterexample \(X \) by using techniques from number theory, analysis, fractal geometry, and differential topology [H1 and H2]. \(X \) is \(C^2 \) and its second derivative satisfies a \((1-\varepsilon)\)-Hölder condition.

1. Continued fractions and quasi-circles. Any irrational number \(\alpha \), \(0 < \alpha < 1 \), can be expressed as a continued fraction

\[
\alpha = \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cdots}}}
\]

where the \(a_i \) are positive integers. One writes \(\alpha = [a_1, a_2, a_3, \ldots] \). The truncation \([a_1, \ldots, a_n] = p_n/q_n\) is the best approximation to \(\alpha \) among all rational numbers \(p/q \) with \(0 < q \leq q_n \). The growth rate of the \(a_i \) tells “how irrational” \(\alpha = [a_i] \) is. At one extreme is the Golden Mean, \(\gamma = [1, 1, \ldots] \); at the other are Liouville numbers such as \(\lambda = [1^{1!}, 2^{2!}, 3^{3!}, \ldots] \). The former is “very irrational” while the latter is “almost rational”.

To study \(\alpha \) dynamically it is standard to consider \(R_\alpha \), the rigid rotation of the circle \(S^1 \) of unit length through angle \(\alpha \). Choose \(x \in S^1 \) and consider its \(R_\alpha \)-orbit \(O_\alpha(x) \). Since \(\alpha \) is irrational, \(O_\alpha(x) \) is dense in \(S^1 \). But how is it dense? For Liouville \(\lambda \), \(O_\lambda(x) \) contains long strings \(\{R^n_\lambda(x), R^{n+1}_\lambda(x), \ldots, R^m_\lambda(x)\} \) that are poorly distributed. They “bunch up”. In contrast, the Golden Mean’s orbit distributes itself fairly evenly throughout \(S^1 \).

Unfortunately, it is hard to distinguish visually (and hence geometrically) between bunched-up dense orbits and well distributed ones. After many iterations, the orbit picture becomes blurred. This is due in fact to the picture’s being drawn on the circle. As a remedy, we “unfold” \(S^1 \) onto a canonically constructed curve \(Q_\alpha \) in the 2-sphere \(S^2 \) as follows.

Choose a “Denjoy” projection \(\rho: S^1 \to S^1 \); that is, \(\rho \) is onto and continuous, \(\rho^{-1}(n\alpha) \) is an interval \(I_n \) for all \(n \in \mathbb{Z} \), the \(I_n \) are disjoint, and \(\rho \) is 1-1.
away from $\bigcup I_n$. By $\langle n\alpha \rangle$ we mean the fractional part of $n\alpha$. The discrepancy of α is

$$D_n(\alpha) = \sup_I \left\{ \frac{1}{n} \left| \sum_{m=0}^{n-1} \chi_I \langle m\alpha \rangle - |I| \right| \right\}$$

where I is an interval in $S^1 = \mathbb{R}/\mathbb{Z}$ and χ_I is its characteristic function. Choose weights $w_n > 0$ so that $\sum w_n D_n(\alpha)$ converges and $w_n D_n(\alpha)$ is monotone decreasing as $|n| \to \infty$. For any $x \in S^1 \setminus I_n$, define $h_\alpha(x) = (h_1(x), h_2(x))$ in $S^1 \times \mathbb{R}$ by

$$h_1(x) = \rho(x) + \sum_{|n|=0}^{\infty} w_n (\rho(x) - \chi_{[0,\rho(x)]}(n\alpha))$$

$$h_2(x) = \sum_{|n|=0}^{\infty} \{w_{2n+1} \chi_{[0,\rho(x)]}(2n+1)\alpha - w_{2n} \chi_{[0,\rho(x)]}(2n\alpha)\}.$$
Continued Fractals and the Seifert Conjecture

\[Q_{(\sqrt{5} - 1)/2} \]

\[Q_{\sqrt{21}} \]

\[Q_{(\sqrt{5} - 2)^{1/2}} \]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fractals.png}
\caption{Continued Fractals.}
\end{figure}

(d) \(A^1 \supset A^2 \supset \cdots \supset A^n \supset \cdots \) and the diameters of the diamonds in \(A^n \) tend to zero as \(n \to \infty \).

(e) \(\text{diam}(\Delta_{11}) \leq \text{diam}(T_{ij}^m) \) if \(1 \leq i, j \leq m \) and \(\Delta_{11} \) is a diagonal of \(A^n \) but not of \(A^{n-1} \).

The intersection \(C = \bigcap A^n \) is a Jordan curve consisting of all the diagonals \(\Delta_{11} \) of all the \(A^n \) plus a Cantor set \(\Gamma \),

\[C = \Delta \cup \Gamma, \quad \Delta = \bigcup \Delta_{11}^n. \]
Such a C is called a *diamond circle*. All continued fractals Q_α with α of constant type are diamond circles and all diamond circles are quasi-circles.

As a degenerate case, suppose all the diagonals of a diamond circle C are points. Then C is the graph of a Lipschitz function $S^1 \to \mathbb{R}$ having Lipschitz constant β (and conversely). In the nondegenerate case and when α is of constant type, its continued fractal $Q = Q_\alpha$ turns out to have Hausdorff dimension > 1, so it cannot be a graph. Nevertheless, Q has the following

Graph-like property. There exist angles η', η, $0 < \eta' < \eta < \pi$, a neighborhood U of Q in the cylinder, and a family of disjoint open sets D_i, $i \in \mathbb{Z}$, such that

(a) Each D_i is a homothetic replica of a fixed hexagon and contains the interior of the diagonal Δ_i. We denote $D = \bigcup D_i$.

(b) If $x \in U \setminus D$ lies on the north side of Q then any point $y \in Q$ nearest x lies in the downward pointing sector of angle η at x. If x lies near the bottom edge of D_i then y lies in the downward pointing sector of angle η' at x. Symmetric conditions prevail south of Q. See Figure 3.

If C is a Lipschitz graph with Lipschitz constant β this property is obvious; D is empty and $\eta = 2 \arctan \beta$. When C is a general diamond curve the proof is tricky.

3. Denjoy homeomorphisms of Q and the Whitney extension theorem.

To introduce dynamics on Q_α we consider any Denjoy homeomorphism D of S^1 satisfying $\rho D = R_{2\alpha} \rho$ (recall ρ from §1). Then we lift $D: S^1 \to S^1$ to $f: Q_\alpha \to Q_\alpha$ via the embedding $h_\alpha: S^1 \to Q_\alpha$. Let $\varepsilon > 0$ be given. Choose a large integer N and set $\alpha = [2N, 2N, \ldots]$. The right choice of weights w_n in the definition of h_α gives

\[
\|f(x) - f(y) - (x - y)\| < C\|x - y\|^{3-\varepsilon}
\]

for some constant C and all x, y in the Cantor set Γ. Using only (*), the Whitney Extension Theorem [W, AR] and the fact that Q_α is a quasi-circle,
we find a $C^{3-\varepsilon}$ diffeomorphism $F: S^2 \to S^2$ fixing the poles of S^2 such that $F|\Gamma = f|\Gamma$, $F(Q_\alpha) = Q_\alpha$, $DF|\Gamma = \text{Id}$, $D^2F|\Gamma = 0$ and $F(D_i) = D_{i+2}$. In particular, F is a $C^{3-\varepsilon}$ Denjoy rotation of Q_α, cf. [Ha, Kn].

Since no quasi-circles have C^3 Denjoy rotations [H4], one is led to wonder if the differentiability class C^3 separates Seifert counterexamples from a Seifert Theorem, much as happens in KAM theory [He, M]. It is also interesting to speculate about the relation between ε and the Hausdorff dimension of Γ. Our F turns out to be of class $C^{3-\varepsilon}$ and our Γ has $HD(\Gamma) = 2 - \varepsilon$, cf. [N]. Must $HD(\Gamma)$ be large if the distortion of Df at Γ is small? Cf. [H4, H5].

4. Semistability of g at Q. We want a modification G of the Whitney extension F in §3 so that $G = F$ on Q, G is a $C^{3-\varepsilon}$ diffeomorphism of S^2 and Q is G-semistable: under forward G-iterates Q attracts the north side of $S^2\setminus Q$ and the reverse holds south of Q.

North of Q we want to push $F(x)$ closer to Q than x was. The crucial fact that lets us do so (in a C^2 fashion near Γ) is the C^2-flabby condition $DF|\Gamma = \text{Id}$ and $D^2F|\Gamma = 0$. The Denjoy examples of Knill [Kn], Hall [Ha] and Herman [He] do not have this property and that is what prevents their use against the Seifert Conjecture.

In Figure 3 we indicate the directions in which we push $F(x)$ toward Q. Since $DF|\Gamma = \text{Id}$ and $D^2F|\Gamma = 0$, such pushing meets little resistance. At this stage of the construction we use the downward-pointing sector (shaded) from the graphlike property (§2), the fact that the quasi-slope β of Q is small, and the fact that the diagonals Δ_i slope backward. Under the resulting diffeomorphism G, Q is semistable. North of Q, $G(D_i) \subset D_{i+2}$, while south of Q, $G^{-1}(D_i) \subset D_{i-2}$.
Seifert counterexamples and loxodromic diffeomorphisms. The diffeomorphism G constructed in §4 sends some $x_0 \in U \setminus D$ north of Q into D_0. Under G its α-limit is the north pole N and its ω-limit is Γ. Similarly, some $y_0 \in D_0$ south of Q is sent into $U \setminus D$ by G; its α-limit is Γ and its ω-limit is the south pole S. Compose G with a C^∞ motion M of S^2 such that $M(G(x_0)) = y_0$ and M leaves all points of $S^2 \setminus D_0$ fixed. The resulting $C^{3-\varepsilon}$ diffeomorphism $H = M \circ G : S^2 \to S^2$ has the following properties:

(a) The only periodic points of H are its fixed-point poles, N and S. They are a source and sink, respectively.
(b) $\lim_{n \to -\infty} H^n(x_0) = N$ and $\lim_{n \to \infty} H^n(x_0) = S$ for some x_0.
(c) H has a minimal set other than the poles.

(a) follows from disjointness of the $G^n(D_0)$, $n \in \mathbb{Z}$; (b) is by construction; (c) is clear—Γ is the minimal set.

A suspension similar in spirit to Schweitzer's [Sch] lets us use H to construct a $C^{3-\varepsilon}$ flow ϕ on S^3 with no compact orbits. By Hart's Smoothing Theorem [Ht], ϕ is conjugate to a flow ψ whose generating vector field X is also of class $C^{3-\varepsilon}$.

This vector field X is a $C^{3-\varepsilon}$ counterexample to the Seifert conjecture. The same procedure applied to any C^r diffeomorphisms $H : S^2 \to S^2$ obeying conditions (a), (b), (c) above would produce a counterexample to the C^r Seifert Conjecture.

It is not known if X is C^2 structurally stable. By Pugh's Closing Lemma it is not C^1 structurally stable [P]. Any diffeomorphism of S^2 obeying (a) and (b) but having no minimal set except the poles is topologically conjugate to the standard loxodromic diffeomorphism $z \to \frac{1}{2}z$ of the closed complex plane $C \cup \infty = S^2$. Thus we put forward the

CONJECTURE. Every C^3 diffeomorphism of S^2 satisfying conditions (a), (b) above is loxodromic.

This is a dissipative analogue of Birkhoff's conjecture that any measure-preserving diffeomorphism of S^2 whose only periodic points are the two fixed point poles must be topologically conjugate to a rigid irrational rotation of S^2.

REFERENCES

[HN2] ______, Denjoy quasi-circles in \(\mathbb{R}^n\) with Hausdorff dimension \(n - \varepsilon\) (in preparation).

[He] M. Herman, Contre-exemples de Denjoy et contre-exemples de classe \(C^{3-\varepsilon}\) au théorème des courbes invariantes ayant un nombre de rotation fixé, (preprint).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, EVANS HALL, BERKELEY, CALIFORNIA 94720