Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Classifying the finite simple groups


Author: Daniel Gorenstein
Journal: Bull. Amer. Math. Soc. 14 (1986), 1-98
MSC (1985): Primary 20D05, 20-02
DOI: https://doi.org/10.1090/S0273-0979-1986-15392-9
MathSciNet review: 818060
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. J. L. Alperin, Sylow intersections and fusion, J. Algebra 6 (1967), 222-241. MR 215913
  • 2. J. L. Alperin, R. Brauer, and D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc. 151 (1970), 1-261. MR 284499
  • 3. J. L. Alperin, R. Brauer, and D. Gorenstein, Finite simple groups of 2-rank two, Scripta Math. 29 (1973), 191-214. MR 401902
  • 4. M. Aschbacher, Finite groups with a proper 2-generated core, Trans. Amer. Math. Soc. 197 (1974), 87-223. MR 364427
  • 5. M. Aschbacher, Finite groups generated by odd transpositions. I, II, III, IV, Math Z. 127 (1972), 45-56; J. Algebra 26 (1973), 451-459; 26 (1973), 460-478; 26 (1973), 479-491. MR 310058
  • 6. M. Aschbacher, On finite groups of component type, Illinois J. Math. 19 (1975), 78-115. MR 376843
  • 7. M. Aschbacher, A characterization of Chevalley groups over fields of odd characteristic, Ann. of Math. (2) 106 (1977), 353-468. MR 498828
  • 8. M. Aschbacher, On finite groups in which the generalized Fitting group of the centralizer of some involution is symplectic but not extra-special, Comm. Algebra 4 (1976), 595-616. MR 407144
  • 9. M. Aschbacher, On finite groups in which the generalized Fitting group of the centralizer of some involution is extra-special, Illinois J. Math. 21 (1977), 347-364. MR 442089
  • 10. Michael Aschbacher, A factorization theorem for 2-constrained groups, Proc. London Math. Soc. (3) 43 (1981), no. 3, 450–477. MR 635565, https://doi.org/10.1112/plms/s3-43.3.450
  • 11. M. Aschbacher, Standard components of alternating type centralized by a4-group (preprint). MR 401903
  • 12. M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), no. 3, 469–514. MR 746539, https://doi.org/10.1007/BF01388470
  • 13. Michael Aschbacher, Thin finite simple groups, J. Algebra 54 (1978), no. 1, 50–152. MR 511458, https://doi.org/10.1016/0021-8693(78)90022-4
  • 14. Michael Aschbacher, Finite groups of rank 3. I, Invent. Math. 63 (1981), no. 3, 357–402. MR 620676, https://doi.org/10.1007/BF01389061
  • 15. Michael Aschbacher, Weak closure in finite groups of even characteristic, J. Algebra 70 (1981), no. 2, 561–627. MR 623826, https://doi.org/10.1016/0021-8693(81)90236-2
  • 16. Michael Aschbacher, The uniqueness case for finite groups. I, Ann. of Math. (2) 117 (1983), no. 2, 383–454. MR 690850, https://doi.org/10.2307/2007081
  • 17. M. Aschbacher, Subgroup structure of finite groups, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge Univ. Press, Cambridge, 1985, pp. 35–44. MR 817233
  • 18. M. Aschbacher, Subgroup structure of finite groups, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge Univ. Press, Cambridge, 1985, pp. 35–44. MR 817233
  • 19. Michael Aschbacher, Overgroups of Sylow subgroups in sporadic groups, Mem. Amer. Math. Soc. 60 (1986), no. 343, iv+235. MR 831891, https://doi.org/10.1090/memo/0343
  • 20. Michael Aschbacher, Daniel Gorenstein, and Richard Lyons, The embedding of 2-locals in finite groups of characteristic 2-type. I, Ann. of Math. (2) 114 (1981), no. 2, 335–404. MR 632843, https://doi.org/10.2307/1971297
  • 21. M. Aschbacher and L. Scott, Maximal subgroups of finite groups, J. Algebra 92 (1985), no. 1, 44–80. MR 772471, https://doi.org/10.1016/0021-8693(85)90145-0
  • 22. Roberto Minio, An interview with Michael Atiyah, Math. Intelligencer 6 (1984), no. 1, 9–19. MR 735359, https://doi.org/10.1007/BF03024202
  • 23. Bernd Baumann, Endliche Gruppen mit einer 2-zentralen Involution, deren Zentralisator 2-abgeschlossen ist, Illinois J. Math. 22 (1978), no. 2, 240–261 (German). MR 490825
  • 24. G. V. Belyĭ, Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 2, 267–276, 479 (Russian). MR 534593
  • 25. H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festlasst, J. Algebra 17 (1971), 527-554. MR 288172
  • 26. H. Bender, On groups with abelian Sylow 2-subgroups, Math. Z. 117 (1970), 164-176. MR 288180
  • 27. H. Bender, On the uniqueness theorem, Illinois J. Math. 14 (1970), 376-384. MR 262351
  • 28. H. Bender, Goldschmidt's 2-signalizer functor theorem, Israel J. Math. 22 (1975), 208-213. MR 390056
  • 29. Helmut Bender, Finite groups with dihedral Sylow 2-subgroups, J. Algebra 70 (1981), no. 1, 216–228. MR 618389, https://doi.org/10.1016/0021-8693(81)90254-4
  • 30. R. Blattner, Induced and produced representations of Lie algebras, Trans. Amer. Math. Soc. 144 (1969), 457-474. MR 308223
  • 31. Richard E. Block and Robert Lee Wilson, The restricted simple Lie algebras are of classical or Cartan type, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 16, , Phys. Sci., 5271–5274. MR 758423, https://doi.org/10.1073/pnas.81.16.5271
  • 32. Enrico Bombieri, A. Odlyzko, and D. Hunt, Thompson’s problem (𝜎²=3), Invent. Math. 58 (1980), no. 1, 77–100. Appendices by A. Odlyzko and D. Hunt. MR 570875, https://doi.org/10.1007/BF01402275
  • 33. A. Borel and J. Tits, Elements unipotents et sousgroupes paraboliques de groupes reductifs. I, Invent. Math. 12 (1971), 97-104. MR 294349
  • 34. R. Brauer, On the structure of groups of finite order, Proc. Internat. Congr. Math., vol. 1, Noordhoff, Groningen, North-Holland, Amsterdam, 1954, pp. 209-217. MR 95203
  • 35. R. Brauer, Some applications of the theory of characters of finite groups. II. J. Algebra 1 (1964), 307-334. MR 174636
  • 36. R. Brauer and K. Fowler, On groups of even order, Ann. of Math. (2) 62 (1955), 565-583. MR 74414
  • 37. R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757-1759. MR 109846
  • 38. Francis Buekenhout, Diagrams for geometries and groups, J. Combin. Theory Ser. A 27 (1979), no. 2, 121–151. MR 542524, https://doi.org/10.1016/0097-3165(79)90041-4
  • 39. P. Cameron, S. Praeger, J. Saxl, and G. Seitz, The Sims conjecture (to appear).
  • 40. G. Cherlin, L. Harrington, and A. H. Lachlan, ℵ₀-categorical, ℵ₀-stable structures, Ann. Pure Appl. Logic 28 (1985), no. 2, 103–135. MR 779159, https://doi.org/10.1016/0168-0072(85)90023-5
  • 41. G. Cherlin and A. H. Lachlan, Stable finitely homogeneous structures, Trans. Amer. Math. Soc. 296 (1986), no. 2, 815–850. MR 846608, https://doi.org/10.1090/S0002-9947-1986-0846608-8
  • 42. C. Chevalley, Sur certains groupes simples, Tôhoku Math. J. 7 (1955), 14-66. MR 73602
  • 43. J. Conway, A characterization of the Leech lattice, Invent. Math. 7 (1969), 137-142. MR 245518
  • 44. J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), no. 3, 308–339. MR 554399, https://doi.org/10.1112/blms/11.3.308
  • 45. C. Curtis, Central extensions of groups of Lie type, J. Reine Angew. Math. 220 (1965), 174-185. MR 188299
  • 46. A. Delgado and B. Stellmacher, Weak BN-pairs of rank2 (preprint).
  • 47. E. Dynkin, Maximal subgroups of classical groups, Trudy Moskov. Mat. Obshch. 1 (1952), 39-166 = Amer. Math. Soc. Transl. (2)6 (1957), 245-378. MR 49903
  • 48. E. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sb. (N.S.) 30(72) (1952), 349-462 = Amer. Math. Soc. Transl. (2)6 (1957), 111-244. MR 47629
  • 49. Freeman J. Dyson, Unfashionable pursuits, Math. Intelligencer 5 (1983), no. 3, 47–54. MR 737690, https://doi.org/10.1007/BF03026573
  • 50. Michel Enguehard, Caractérisation des groupes de Ree, Astérisque 142-143 (1986), 49–139, 296 (French, with English summary). Révision dans les groupes finis. Groupes du type de Lie de rang 1. MR 873958
  • 51. Burton Fein, William M. Kantor, and Murray Schacher, Relative Brauer groups. II, J. Reine Angew. Math. 328 (1981), 39–57. MR 636194
  • 52. W. Feit, Rigidity of 𝐴𝑢𝑡(𝑃𝑆𝐿₂(𝑝²)), 𝑝≡±2 (𝑚𝑜𝑑5),𝑝̸=2, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge Univ. Press, Cambridge, 1985, pp. 351–356. MR 817268
  • 53. W. Feit and P. Fong, Rational rigidity of 𝐺₂(𝑝) for any prime 𝑝>5, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge Univ. Press, Cambridge, 1985, pp. 323–326. MR 817266
  • 54. W. Feit, P. Fong, and B. Srinivasan, Rigidity of 𝑆𝐿_{𝑛}(𝑞) and certain subgroups for (𝑛,𝑞-1)=1 and 𝑛>2, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge Univ. Press, Cambridge, 1985, pp. 303–307. MR 817263
  • 55. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029. MR 166261
  • 56. B. Fischer, Finite groups generated by 3-transpositions, Invent. Math. 13 (1971), 232-246. MR 294487
  • 57. Paul Fong, Characters arising in the Monster-modular connection, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 557–559. MR 604633
  • 58. Richard Foote, Aschbacher blocks, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 37–42. MR 604554
  • 59. I. B. Frenkel, J. Lepowsky, and A. Meurman, A natural representation of the Fischer-Griess Monster with the modular function 𝐽 as character, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 10, , Phys. Sci., 3256–3260. MR 747596, https://doi.org/10.1073/pnas.81.10.3256
  • 60. R. Gilman, Components of finite groups, Comm. Algebra 4 (1976), 1133-1198. MR 430053
  • 61. Robert H. Gilman and Robert L. Griess Jr., Finite groups with standard components of Lie type over fields of characteristic two, J. Algebra 80 (1983), no. 2, 383–516. MR 691810, https://doi.org/10.1016/0021-8693(83)90007-8
  • 62. G. Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420. MR 202822
  • 63. G. Glauberman, On solvable signalizer functors in finite groups, Proc. London Math. Soc. 33 (1976), 1-27. MR 417284
  • 64. G. Glauberman, Factorizations in local subgroups of finite groups, CBMS Regional Conf. Ser. in Math., no. 33, Amer. Math. Soc., Providence, R.I., 1977. MR 470072
  • 65. G. Glauberman, Local analysis in the odd order paper, Proc Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, p. 137.
  • 66. George Glauberman and Richard Niles, A pair of characteristic subgroups for pushing-up in finite groups, Proc. London Math. Soc. (3) 46 (1983), no. 3, 411–453. MR 699096, https://doi.org/10.1112/plms/s3-46.3.411
  • 67. D. Goldschmidt, Solvable signalizer functors on finite groups, J. Algebra 21 (1972), 137-148. MR 297861
  • 68. D. Goldschmidt, 2-signalizer functors on finite groups, J. Algebra 21 (1972), 321-340. MR 323904
  • 69. D. Goldschmidt, 2-fusion in finite groups, Ann. of Math. (2)99 (1974), 70-117. MR 335627
  • 70. D. Goldschmidt, Strongly closed 2-subgroups of finite groups, Ann. of Math. (2) 102 (1975), 475-489. MR 393223
  • 71. David M. Goldschmidt, Automorphisms of trivalent graphs, Ann. of Math. (2) 111 (1980), no. 2, 377–406. MR 569075, https://doi.org/10.2307/1971203
  • 72. David M. Goldschmidt, Lectures on character theory, Publish or Perish, Inc., Wilmington, Del., 1980. MR 575526
  • 73. D. Gorenstein, On the centralizers of involutions in finite groups, J. Algebra 11 (1969), 243-277. MR 240188
  • 74. D. Gorenstein, Finite groups, Harper and Row, New York, 1968; 2nd ed., Chelsea, New York, 1980. MR 231903
  • 75. Daniel Gorenstein, The classification of finite simple groups. I. Simple groups and local analysis, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 1, 43–199. MR 513750, https://doi.org/10.1090/S0273-0979-1979-14551-8
  • 76. Daniel Gorenstein, Finite simple groups, University Series in Mathematics, Plenum Publishing Corp., New York, 1982. An introduction to their classification. MR 698782
  • 77. Daniel Gorenstein, The classification of finite simple groups. Vol. 1, The University Series in Mathematics, Plenum Press, New York, 1983. Groups of noncharacteristic 2 type. MR 746470
  • 78. D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by at most 4 elements, Mem. Amer. Math. Soc No. 147 (1974), 1-464. MR 367048
  • 79. D. Gorenstein and R. Lyons, Nonsolvable finite groups with solvable 2-local subgroups, J. Algebra 38 (1976), 453-522. MR 407128
  • 80. Daniel Gorenstein and Richard Lyons, The local structure of finite groups of characteristic 2 type, Mem. Amer. Math. Soc. 42 (1983), no. 276, vii+731. MR 690900, https://doi.org/10.1090/memo/0276
  • 81. D. Gorenstein and J. Walter, On the maximal subgroups of finite simple groups, J. Algebra 1 (1964), 168-231. MR 172917
  • 82. D. Gorenstein and J. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, J. Algebra 2 (1964), 85-151, 218-270, 354-393. MR 177032
  • 83. D. Gorenstein and J. Walter, Centralizers of involutions in balanced groups, J. Algebra 20 (1972), 284-319. MR 292927
  • 84. D. Gorenstein and J. Walter, Balance and generation in finite groups, J. Algebra 33 (1975), 224-287. MR 357583
  • 85. Robert L. Griess Jr., The friendly giant, Invent. Math. 69 (1982), no. 1, 1–102. MR 671653, https://doi.org/10.1007/BF01389186
  • 86. G. Higman, Suzuki 2-groups, Illinois J. Math. 7 (1963), 79-96. MR 143815
  • 87. G. Hoyden, Realisierung der Jankogrouppen J1 and J, Algebra J. (to appear).
  • 88. G. Hoyden and B. Matzat, Realisierung sporadischer einfacher gruppen als Galoisgruppen ober Kreisteilungskorpern (to appear).
  • 89. David C. Hunt, Rational rigidity and the sporadic groups, J. Algebra 99 (1986), no. 2, 577–592. MR 837564, https://doi.org/10.1016/0021-8693(86)90047-5
  • 90. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976. MR 460423
  • 91. Z. Janko, A new finite simple group of order86, 775, 571, 046, 077, 562, 880 which possesses M, J. Algebra 42 (1976), 564-496. MR 432751
  • 92. Z. Janko, Nonsolvable finite groups all of whose 2-local subgroups are solvable. I, J. Algebra 21 (1972), 458-517. MR 357584
  • 93. V. Kac., On the classification of simple Lie algebras over a field of nonzero characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 385-408; English transl. Math. USSR-Izv. 4 (1970), 391-413. MR 276286
  • 94. V. Kac., Description of filtered Lie algebras with which graded Lie algebras of Carton type are associated, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 800-834; English transl. Math. USSR-Izv. 8 (1974), 801-835. MR 369452
  • 95. W. Kantor, Polynomial-time algorithms for finding elements of prime order and Sylow subgroups (submitted).
  • 96. K. Klinger and G. Mason, Centralizers of p-groups in groups of characteristic 2, p-type, J. Algebra 37 (1975), 362-375. MR 390047
  • 97. A. Kostrikin and I. Shafarevich, Graded Lie algebras of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 748-764; English transl. Math. USSR-Izv. 3 (1969), 237-304. MR 252460
  • 98. J. Leech, Some sphere packings in higher space, Canad. J. Math. 16 (1964), 657-682. MR 167901
  • 99. J. Leech, Notes on sphere packings, Canad. J. Math. 19 (1967), 251-267. MR 209983
  • 100. Eugene M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time, J. Comput. System Sci. 25 (1982), no. 1, 42–65. MR 685360, https://doi.org/10.1016/0022-0000(82)90009-5
  • 101. J. Lundgren, On finite simple groups all of whose 2-local subgroups are solvable, J. Algebra 27 (1973), 491-515. MR 332953
  • 102. R. Lyons, A characterization of PSU (3, 4), Trans. Amer. Math. Soc. 164 (1972), 371-387. MR 286881
  • 103. A. MacWilliams, On 2-groups with no normal abelian subgroups of rank3 and their occurrence as Sylow 2-subgroups of finite simple groups, Trans. Amer. Math. Soc. 150 (1970), 345-408. MR 276324
  • 104. G. Mason, The classification of quasithin simple groups (preprint).
  • 105. G. Mason, Modular forms and the theory of Thompson series, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge Univ. Press, Cambridge, 1985, pp. 391–407. MR 817271
  • 106. B. Heinrich Matzat, Zum Einbettungsproblem der algebraischen Zahlentheorie mit nicht abelschem Kern, Invent. Math. 80 (1985), no. 2, 365–374 (German). MR 788415, https://doi.org/10.1007/BF01388611
  • 107. B. Matzat and A. Zeh, Realisierung der mathieugruppen M. Number Theory (to appear).
  • 108. Patrick P. McBride, Nonsolvable signalizer functors on finite groups, J. Algebra 78 (1982), no. 1, 215–238. MR 677718, https://doi.org/10.1016/0021-8693(82)90108-9
  • 109. Emmy Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. 78 (1917), no. 1, 221–229 (German). MR 1511893, https://doi.org/10.1007/BF01457099
  • 110. Thomas Peterfalvi, Le théorème de Bender-Suzuki. I, II, Astérisque 142-143 (1986), 141–233, 235–295, 296 (French, with English summary). Révision dans les groupes finis. Groupes du type de Lie de rang 1. MR 873959
  • 111. K. Phan, On groups generated by SU (3, q)'s. I, II, J. Austral. Math. Soc. 23 (1977), 66-76; 129-146. MR 447427
  • 112. R. Ree, A family of simple groups associated with the simple Lie algebra F4, Amer. J. Math. 83 (1961), 401-420. MR 132781
  • 113. R. Ree, A family of simple groups associated with the simple Lie algebra G, Amer. J. Math. 83 (1961), 432-462. MR 138680
  • 114. M. A. Ronan and S. D. Smith, 2-local geometries for some sporadic groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 283–289. MR 604595
  • 115. Gary M. Seitz, The root subgroups for maximal tori in finite groups of Lie type, Pacific J. Math. 106 (1983), no. 1, 153–244. MR 694680
  • 116. G. M. Seitz, Overgroups of irreducible linear groups, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge Univ. Press, Cambridge, 1985, pp. 95–106. MR 817240
  • 117. I. Shafarevich, Construction of fields of algebraic numbers with given solvable Galois group, Izv. Akad. Nauk SSSR Ser. Mat. 18 (1954), 525-578. MR 71469
  • 118. D. Sibley, Groups of odd order revisited (in preparation).
  • 119. C. Sims, Graphs and finite permutation groups. I, II, Math. Z. 95 (1967), 76-86; 103 (1968), 276-281. MR 204509
  • 120. Charles C. Sims, Some group-theoretic algorithms, Topics in algebra (Proc. 18th Summer Res. Inst., Austral. Math. Soc., Austral. Nat. Univ., Canberra, 1978) Lecture Notes in Math., vol. 697, Springer, Berlin, 1978, pp. 108–124. MR 524367
  • 121. F. Smith, Finite simple groups all of whose 2-local subgroups are solvable, J. Algebra 34 (1975), 481-520. MR 376847
  • 122. Stephen D. Smith, Large extraspecial subgroups of widths 4 and 6, J. Algebra 58 (1979), no. 2, 251–281. MR 540638, https://doi.org/10.1016/0021-8693(79)90160-1
  • 123. Stephen D. Smith, A characterization of orthogonal groups over 𝐺𝐹(2), J. Algebra 62 (1980), no. 1, 39–60. MR 561116, https://doi.org/10.1016/0021-8693(80)90204-5
  • 124. Stephen D. Smith, A characterization of finite Chevalley and twisted groups of type 𝐸 over 𝐺𝐹(2), J. Algebra 62 (1980), no. 1, 101–117. MR 561119, https://doi.org/10.1016/0021-8693(80)90207-0
  • 125. Stephen D. Smith, On the head characters of the Monster simple group, Finite groups—coming of age (Montreal, Que., 1982) Contemp. Math., vol. 45, Amer. Math. Soc., Providence, RI, 1985, pp. 303–313. MR 822245, https://doi.org/10.1090/conm/045/822245
  • 126. R. Steinberg, Variations on a theme of Chevalley, Pacific J. Math. 9 (1959), 875-891. MR 109191
  • 127. R. Steinberg, Generateurs, relations, et revêtements de groupes algébriques, Colloque sur la theorie des groupes algébriques, C.B.R.M., Brussels, 1962, pp. 113-127. MR 153677
  • 128. R. Steinberg, Lectures on Chevalley groups, Lecture Notes, Yale Univ. 1967-1968. MR 466335
  • 129. R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc. No. 80 (1968). MR 230728
  • 130. G. Stroth, Solvable uniqueness subgroups (to appear).
  • 131. M. Suzuki, Finite groups with nilpotent centralizers, Trans. Amer. Math. Soc. 99 (1961), 425-470. MR 131459
  • 132. M. Suzuki, On a class of double transitive groups. I, II, Ann. of Math. (2) 75 (1962). MR 136646
  • 133. M. Suzuki, On characterizations of linear groups. III, Nagoya J. Math. 21 (1962), 159-183. MR 142665
  • 134. J. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable. I-VI, Bull. Amer. Math. Soc. 74 (1968), 383-437; Pacific J. Math. 33 (1970), 451-536; 39 (1971), 483-534; 48 (1973), 511-592; 50 (1974), 215-297; 51 (1974), 573-630. MR 276325
  • 135. J. Thompson, Toward a characterization of E. I, II, III, J. Algebra 7 (1967), 406-414; 20 (1972), 610-621; 49 (1977), 163-166.
  • 136. J. G. Thompson, Some numerology between the Fischer-Griess Monster and the elliptic modular function, Bull. London Math. Soc. 11 (1979), no. 3, 352–353. MR 554402, https://doi.org/10.1112/blms/11.3.352
  • 137. J. Thompson, Some finite groups which appear as ${\rm Gal}\,L/K$, where $K\subseteq Q(µ\sbn)$, J. Algebra 89 (1984), 437-499.
  • 138. John G. Thompson, Galois groups, Groups—St. Andrews 1989, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 160, Cambridge Univ. Press, Cambridge, 1991, pp. 455–462. MR 1123999, https://doi.org/10.1017/CBO9780511661846.018
  • 139. J. G. Thompson, Rational rigidity of 𝐺₂(5), Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge Univ. Press, Cambridge, 1985, pp. 321–322. MR 817265
  • 140. J. G. Thompson, Primitive roots and rigidity, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge Univ. Press, Cambridge, 1985, pp. 327–350. MR 817267
  • 141. F. Timmesfeld, Groups generated by root involutions. I, J. Algebra 33 (1975), 75-135. MR 372019
  • 142. Franz Timmesfeld, Finite simple groups in which the generalized Fitting group of the centralizer of some involution is extraspecial, Ann. of Math. (2) 107 (1978), no. 2, 297–369. MR 486255, https://doi.org/10.2307/1971146
  • 143. F. Timmesfeld, Tits geometries and parabolic systems in finite groups. I, II, Math. Z. 184 (1983), 377-396; 449-487.
  • 144. J. Tits, Algebraic and abstract simple groups, Ann. of Math. (2)80 (1964), 313-329. MR 164968
  • 145. J. Tits, Buildings of spherical type and finite (B, N)-pairs, Lecture Notes in Math., vol. 386, Springer-Verlag, Berlin and New York, 1974. MR 470099
  • 146. J. Tits, A local approach to buildings, The geometric vein, Springer, New York-Berlin, 1981, pp. 519–547. MR 661801
  • 147. J. Tits, Affine buildings of rank $\geqslant 4$ (unpublished).
  • 148. W. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947), 459-474. MR 21678
  • 149. W. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959), 621-624. MR 109794
  • 150. J. Walter, The characterization of finite groups with abelian Sylow 2-subgroups, Ann. of Math. (2) 89 (1969), 405-514. MR 249504
  • 151. J. H. Walter, Classical groups as Galois groups, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984) Cambridge Univ. Press, Cambridge, 1985, pp. 357–383. MR 817269
  • 152. John H. Walter, The 𝐵-conjecture: 2-components in finite simple groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 57–66. MR 604557
  • 153. W. Wong, Determination of a class of primitive permutation groups, Math. Z. 99 (1967), 235-246. MR 214653
  • 154. B. I. Zil′ber, Strongly minimal countably categorical theories, Sibirsk. Mat. Zh. 21 (1980), no. 2, 98–112, 237 (Russian). MR 569179
  • 155. Thomas Peterfalvi, Simplification du chapitre VI de l’article de Feit et Thompson sur les groupes d’ordre impair, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 12, 531–534 (French, with English summary). MR 770439

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 20D05, 20-02

Retrieve articles in all journals with MSC (1985): 20D05, 20-02


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1986-15392-9

American Mathematical Society