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INTRODUCTION 

Although the title of this article is almost the same as that of an earlier paper 
in this journal, The classification of the finite simple groups [75], with the added 
similarity that each is divided into four chapters, nevertheless there is almost 
no overlap between the two, beyond the fact that both concern the recently 
completed determination of the finite simple groups. 

My earlier paper focused on the past: its primary aim was to describe the 
finite simple groups (Chapters II and III) and also to present a picture of the 
principal techniques underlying the classification theorem (Chapter IV), with a 
brief global overview of the proof itself (Chapter I), added to put the entire 
discussion in perspective. 

In contrast, the present paper looks to the future: its concern is, on the one 
hand, with the significance of the classification theorem both to future research 
in finite group theory and to its range of applicability in other areas of 
mathematics (topics discussed in Chapter I) and, on the other hand, to the 
fundamental task of constructing a shorter and more readily accessible "sec­
ond generation" classification proof (this is the content of the remaining three 
chapters). 

In preparation for a discussion of the meaning of a "satisfactory classifica­
tion proof," in Chapter II we first illustrate the partially haphazard and 
partially inexorable evolution of the existing proof, developed as it was over a 
thirty-year period without benefit of a predetermined plan. Under such cir­
cumstances, it was inevitable that the final global design included considerable 
inefficiencies and, with hindsight, some avoidable duplications of effort. In 
Chapter III we present a critique of the present proof and discuss alternative 
strategies for constructing a satisfactory proof. 

My own close examination of the present proof over the past several years, 
largely with Richard Lyons, and more recently with Ronald Solomon as well, 
has led to a particular global strategy which, utilizing only presently known 
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group-theoretic techniques, holds out the prospect of achieving as much as a 
five-fold reduction in length, with a commensurate over-all conceptual simplifi­
cation. Chapter IV is devoted to a detailed outline of this proposed plan, 
whose implementation is well under way as of this writing. 

Finally, for completeness, we have included in Chapter I a brief discussion 
of the known simple groups—in particular, the sporadic groups—which are, of 
course, also (more fully) described in [75]. However, concerning the sporadic 
groups, we have focused here on the distinction between the group-theoretic 
context in which each first arose and the specific method by which each was 
subsequently constructed, a point not stressed in the earlier article. 

Although the present paper is self-contained, we should add that the 
nonexpert will certainly find the material in [75] helpful as background for 
understanding this discussion of the finite simple groups. 

CHAPTER I. STATEMENT AND SIGNIFICANCE OF THE THEOREM 

The classification theorem of the finite simple groups asserts that every finite 
simple group is on a completely specified list. Clearly, before we can discuss its 
proof, we must at least briefly describe the groups composing that list. 

Since this classification theorem is generally regarded as a milestone of 
twentieth-century mathematics, I would also like to give some feeling for its 
profound impact on finite group theory and at the same time indicate the 
strong prospects, already partially realized, of its significant application to 
widely diverse areas of mathematics. Finally, in the last section of this part, I 
shall take a more philosophical perspective, discussing its significance within 
the broader context of classification theorems, in general, and shall also 
attempt to explain the inherent complexity of the theorem. 

Our notation will be standard. However, terms unfamiliar to the nonexpert 
will be defined here. In particular, for any group X and subset or subgroup Y 
of X, CX(Y) = centralizer of Y in X= [x e X\xy = yx for all y e 7 } , 
Z(X) = center of X = CX(X), and NX(Y) = normalizer of Y in X = {x e X\ 
x~lYx = Y}. Additional terminology will be introduced as we go along. 

1. Statement of the theorem. We first state the classification theorem in a 
general form and shall then amplify its statement. 

CLASSIFICATION THEOREM. Every finite simple group is isomorphic to one of 
the following: 

(1) A cyclic group of prime order; 
(2) An alternating group; 
(3) A member of one of sixteen infinite families of groups of Lie type; or 
(4) One of twenty-six sporadic groups not isomorphic to any of the above 

groups. 

The group Zp of prime order p is, of course, commutative. For brevity, the 
term "simple group" usually refers to a nonabelian simple group. 

The alternating group An is the subgroup of even permutations of the 
symmetric group 2„ on n letters. An is simple for all n ^ 5. 
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It is the groups of Lie type and the sporadic groups that require fuller 
descriptions. 

A. The groups of Lie type. The sixteen families of simple groups of Lie type 
are finite analogues of (complex) Lie groups. They divide into three general 
types. 

1. The Chevalley groups. There are four infinite families of Lie groups: the 
linear groups An, the symplectic groups C„, and the orthogonal groups Bn, Dn, 
plus five exceptional Lie groups G2, F4, E6, E7, and Es, the subscripts 
referring to their Lie rank—i.e., to the number of fundamental reflections 
generating their Weyl groups. [It is standard to use the notation An for both 
the alternating and linear groups. The context will make clear which group is 
intended.] 

Each of these groups has representations by complex matrices. The finite 
analogues are obtained by using matrices over a finite field GF{q) with q 
elements. 

For example, the general linear group GLm{q) is the group of all nonsingular 
m X m matrices with coefficients in GF{q). Its normal subgroup SLm(q) of 
matrices of determinant 1 is the special linear group, and the factor group 
PSLm(q) = SLm(q)/(group of scalar matrices) is the projective special linear 
group. 

PSLm(q) is the finite analogue of the Lie group An for n = m - 1. 
PSLm(q) is simple for all m > 2 except for m = 2 and q < 3 (in which 

cases it is solvable [just as the alternating groups of degree < 4 are solvable]). 
It was Chevalley [42] who proved the existence of finite analogues of the 

simple Lie groups over any field—in particular over GF(q), q any prime 
power—at the same time establishing their simplicity and showing that they 
have internal structures very similar to those of the corresponding Lie groups. 
Thus we have nine families of finite simple 

CHEVALLEY GROUPS 

An{q)9 Bn(q), Cn(q), DH(q), G2(q), F4(q), E6(q), E7(q), and Es(q). 

2. The Steinberg groups. The Lie groups possess so-called real forms and 
those Lie groups with a symmetric Dynkin diagram have extra such forms: 
namely, 

An o—o—o . . . o—o 

n o—O—O • • • O—& 

O 

and 
o 

which have symmetries of period 2. [The diagram of D4 also has a symmetry of 
period 3, but as the complex numbers do not have an automorphism of period 
3 over the reals, there is no corresponding real form.] 
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The unitary groups are such real forms of the linear groups. 
A matrix X e GLm(Q) is unitary if 

where ~ denotes complex conjugation and t denotes transpose. The set of 
unitary matrices form a subgroup GUm(C), the general unitary group, of 
GLm(C). One can then consider the corresponding groups SUm(C), and 
PSUm(C) = S(/w(C)/scalars, and one has 

PSUm(C) = real form of An for n = m - 1. 

Note also that the map a: X -* (Xl)~l is an automorphism of GLm(C) of 
period 2, and the group GUm(C) is precisely the subgroup of matrices fixed 
by a. 

The unitary groups have finite analogues when q = r2, for then the underly­
ing field GF(q) possesses an automorphism of period 2 (again denoted by "), 
in which each element is raised to the rth power. Using this automorphism in 
place of complex conjugation, one obtains the finite unitary groups in the same 
way as the complex unitary groups (one usually writes GUm(r\ etc., instead of 
GUm(q)). 

It was Steinberg [126] who showed that Chevalley's arguments carry over to 
produce finite analogues of real forms of An, Dn, E6 whenever q is a square, 
as groups of fixed points of appropriate automorphisms of period 2 of the 
corresponding Chevalley groups. Moreover, when q = r3, the cubing map gives 
an automorphism of GF(q) of period 3, which can be used in place of complex 
conjugation to produce a second "real form" of DA(q), known as triality D4. In 
this way we obtain four families of simple groups which are designated as 
follows: 

STEINBERG GROUPS 

2AH(q), 2Dn(q), 3D4(q)9 and 2E6(q). 

Here the exponent indicates the order of the given symmetry, and the corre­
sponding Chevalley groups are defined over GF(q2), GF(q2), GF(q3), GF{q2), 
respectively. 

The linear, symplectic, orthogonal groups, and unitary groups are also 
known as the classical groups. We shall use the notation PSLm(q\ PSp4(q), 
PSO^(q), and PSUm(q) for them; here e = +1 and according as m is even or 
odd and e = 4-1 or - 1 , PSO^(q) corresponds to Bn, Dw, or 2Dn for suitable n. 

3. The Suzuki and Ree groups. When q = 2a, 3a, and 2a, respectively, the 
groups B2{q), G2(q), and F4(q) possess an automorphism group twice as large 
as that predicted by the general Lie theory. Moreover, when a is odd, there is, 
in fact, an extra automorphism of period 2. Taking fixed points with respect to 
these involutory automorphisms yields three further families of simple groups 
for which there exist no complex analogues. Suzuki [132] had constructed the 
first of these families (usually denoted by Sz(q)) without being aware of their 
connection with the Lie theory. However, later Ree [112, 113] realized that 
connection and went on to apply the Steinberg method to the G2 and FA cases. 
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Thus we have the three additional families of 

SUZUKI AND REE GROUPS 

Sz(q)=2B2(q), q = 2' ; 2G2(q), q = 3«; 

2F4(q), 4 = 2*; a odd. 

Together the Chevalley, Steinberg, and Suzuki-Ree groups constitute the 
(finite) groups of Lie type. They are all simple except in very low Lie rank and 
over small fields. Moreover, all isomorphisms among them, as well as with 
alternating groups, have been determined. 

It should be mentioned that the three kinds of groups of Lie type all arise 
from a uniform construction, elucidated by Steinberg [129]: namely, if G 
denotes the Chevalley analogue over an algebraically closed field Fp of 
characteristic p of a complex simple Lie group, then G is, in fact a linear 
algebraic group. Moreover, if a is a surjective endomorphism of G (as an 
algebraic group) whose fixed points CG(a) form a finite group (e.g., o: x -> xq, 
x e Fp9 q = pn\ then every nonabelian composition factor of CG(o) is a 
(finite) group of Lie type, and all groups of Lie type arise this way for some a. 

B. The sporadic groups. The sporadic groups were discovered in the course of 
investigating several quite independent problems. As a result, even a minimal 
description of their origins requires a number of necessary terms, which we 
prefer to introduce at the same time. 

Let X be an arbitrary finite group. 
An element of X of order 2 is called an involution. 
If X is a subgroup of 2„ for some «, X is called a permutation group (of 

degree n). 
We regard 2W as acting on the set £2 = (1 ,2 , . . . , n}. 
X is k-fold transitive on £2 if any ordered /c-tuple of distinct points of £2 can 

be transformed into any other by an element of X. One writes transitive, 
doubly transitive, etc. for 1-fold transitive, 2-fold transitive, etc. 

The stabilizer Xa in X of the point flGÛis the subgroup of all elements of 
X leaving a fixed. If X is transitive, then Xa is determined up to conjugacy 
(and hence up to isomorphism) by a. 

If X is transitive on £2, then the permutation rank r of X is the number of 
distinct orbits of Xa in its action on £2 (i.e., the number of transitive 
constituents of Xa on £2). r is independent of the choice of a e £2. We have 
r > 2 (assuming n > 2) with r = 2 if and only if X is doubly transitive. 

X is primitive on £2 if X is transitive on £2 and £2 cannot be decomposed as 
the union of k > 2 disjoint subsets Ql9 £22,...,£2A: that are transformed into 
each other by X. X is primitive on £2 if and only if X is transitive on £2 and Xa 

is a maximal subgroup of A" for a e £2. 
The set 3> of all transpositions (//'), / ¥=y, 1 < i,j < n has the following 

properties: 
(1) The elements of 2 form a conjugacy class of involutions of 2„; 
(2) 2„ is generated by the elements of Q)\ and 
(3) If JC, y e ^ , then the order |jcy| of xy is 1, 2, or 3. 
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Motivated by these properties, Fischer made the following definition [56]. 
The abstract group X is called a ^-transposition group if X is generated by a 

(union) of conjugacy classes 3f of involutions such that the product of any two 
elements of 2 has order 1, 2, and 3. 

Extending the definition, X is similarly called a {3,4}-transposition group if 
the product of any two involutions of the generating classes 3f has order 1, 2, 
3, or 4. 

Finally, a lattice A is a free abelian group of finite rank n together with a 
real-valued symmetric nonsingular bilinear form (, ). If (, ) is positive definite, 
then A can be embedded in R". A is integral if (x9 y) is an integer for all 
x, y e A, and A is even if, in addition, (x, x) is an even integer for all JC e A. 
Moreover, A is unimodular if for some (any) basis wly w2,...,w/I of A, the 
determinant of the matrix ((w,, Wj)) is ± 1. 

The Leech lattice [98, 99] is a particular 24-dimensional lattice, which we 
shall not describe explicitly. We note, however, that Conway [43] has shown 
that it is the unique 24-dimensional positive definite unimodular even lattice in 
which no vector has square norm 2 (i.e., (JC, x) # 2 for all x e A). 

M ,M ,M ,M ,M The Mathieu groups 
11 12 22 23 24 

J ,J ,J ,J Janko's groups 

.1,.2,.3 Conway's groups 

M(22) ,M(23) ,M(24)' The Fischer groups [M(24)' is 

the derived group of index 2 

in M(24).3 

HS The Higman-Sims group 

Mc McLaughlin's group 

Suz Suzuki's (sporadic) group 

Ru The Rudvalis group 

He Held's group 

Ly Lyons' group 

ON O'Nan's group 

F Harada's group 
5 

F Thompson's group 

F Fischer's "baby monster" group 

F The Fischer-Griess "friendly 

giant" or "monster" group 

TABLE 1. The sporadic groups. 
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Likewise I shall not give the exact definition of the Griess-Norton algebra—a 
certain 196,883-dimensional commutative, nonassociative complex algebra, 
equipped with an associative form, which underlies the construction of Griess' 
"friendly giant," otherwise known as "the monster" [85]. 

Now we can give a schematic picture of the group-theoretic origins of the 
twenty-six sporadic groups and the terms in which they were initially con­
structed (Table 2). It should be pointed out that many were constructed only 
after a lengthy analysis of the particular group-theoretic context in which they 
arose. In fact, in some instances, the individual who found the initial evidence 
for the group was not the same one(s) who carried out the actual construction 
(primarily in those cases requiring computer calculations). Therefore, where 
appropriate, we list separately the original context and the basis for construc­
tion, likewise indicating by the term "(computer)" its dependence on computer 
calculations. 

For brevity, we make no systematic attempt to give full attributions. In 
general, our notation refers to the individual(s) who found the initial evidence 
for the group, except for those cases in which other notation has become 
standard. 

[Although Fl itself is not one of the Fischer transposition groups and the 
initial evidence for its existence arose from a centralizer-of-involution problem, 
we prefer to include it with the transposition groups because of its close 
dependency on F2, whose properties were crucial for its discovery. Note also 
that it is the commutator subgroup M(24)' of index 2 in M(24) that is a 
sporadic simple group.] 

Griess' remarkable construction of F1 was carried out entirely by hand, 
depending only upon the prior existence of .1 (which occurs as the homomor-
phic image of the centralizer of one of the involutions of Fx). In turn, 
construction of .1 requires only prior existence of M24. Hence, as a corollary of 
his existence theorem, Griess immediately obtained a noncomputer proof of the 
existence of the following seven additional sporadic groups, each of which is 
involved in some fashion in Fx\ 

He, M(22), M(23), M(24)', F5, F3, F2. 

[J2, HS, and Mc are also in Fl9 but occur as subgroups of .1.] 
Since the completion of the classification, Ru and J3 have also been given 

noncomputer constructions, so that at the present time only the three groups 

Ly, ON, J4 

depend on computer calculations for their existence. 

2. Applications of the theorem. Some have suggested that the classification of 
the finite simple groups is an essentially isolated result that will have only a 
limited mathematical impact. The problem was there, it was interesting, so we 
solved it—much the same as the four-color problem. I believe this to be a 
serious misreading of the situation, for the evidence to date indicates, to the 
contrary, that the classification theorem is destined to have profound mathe­
matical impact. Indeed, it has already found significant application in such 
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diverse fields as number theory, automorphic functions, finite geometry, model 
theory, algorithms, and coding theory as well as to finite group theory itself, 
and as the result becomes more widely understood and its usefulness appreci­
ated, the number and range of such applications can certainly be expected to 
increase. 

Origin Construction 

1. Multiply transitive groups 

M ,M 5-fold transitive groups 
12 24 

M ,M ,M point stabilizers 
11 22 23 

2 . Centralizers of involutions 

J Subgroup of GL (11) 

J Rank 3 primitive permutation 
2 group 

J ,Ly,He,0M Rank > 3 primitive 
3 permutation groups (computer) 

J Subgroup of GL (2) (computer) 
4 112 

F Subgroup of GL (c) (computer) 
5 133 

F Subgroup of E (3) (computer) 
3 8 

3. Rank 3 primitive permutation groups 

HS,Mc,Suz Rank 3 primitive permutation 
groups 

Ru Subgroup of GL „(C) (computer) 
28 

4. Automorphism groups of integral lattices 

.1 Automorphisms of Leech 
lattice 

.2,.3 Stabilizers of suitable 
Leech lattice vectors 

5. Transposition groups 

M(22),M(23) ,M(24) Rank 3 primitive 
(3-transposition groups) permutation groups 

F ({3,4}-transposition Rank > 3 primitive 
2 group) permutation group 

(computer) 

F ("double cover" of Automorphism group of 
1 F as centralizer of Griess-Norton algebra 

2 involution) 

TABLE 2 
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Here I shall limit myself to some selected applications of a general nature 
that will indicate the scope of the theorem. 

A. Finite group theory. Many general questions about finite groups can be 
reduced to questions concerning simple groups, so that one would certainly 
expect the classification theorem to have important consequences for finite 
group theory. Here are five such applications. 

1. The Schreier conjecture. The automorphism group of every simple group 
has been calculated, so that as a direct consequence of the classification 
theorem one obtains a proof of the celebrated Schreier conjecture: 

THEOREM. Every simple group has a solvable outer automorphism group. 

2. Multiply transitive permutation groups. Likewise one can easily determine 
which simple groups possess highly transitive permutation representations, 
which yields the following further consequence of the theorem: 

THEOREM. Every quadruply transitive permutation group is either an alternat­
ing, symmetric, or Mathieu group. In particular, the alternating and symmetric 
groups are the only 6-f old transitive permutation groups. 

3. The Sims conjecture. Some years ago Sims proved the following result 
[119]: 

THEOREM. If G is a primitive permutation group on a set ti and if a one-point 
stabilizer Gx has an orbit of length 3 on Ü, then \GX\ = 2a • 3 for some a < 4. 

Sims' proof was very interesting, reducing the problem to properties of 
so-called "cubic graphs," previously established by Tutte [148, 149]. [Subse­
quently, Warren Wong [153], using Sims' result, completely classified the 
possibilities for G.] 

From this example, Sims was led to make the following important conjec­
ture. 

SIMS' CONJECTURE. There exists a function f(d) such that if G is a primitive 
permutation group on a set £2 in which a one-point stabilizer Gx has an orbit 
of length d, then \GX\ is bounded by f(d). 

In effect, the conjecture gives a general property of the embedding of 
maximal subgroups of finite groups. 

Using the classification theorem, Cameron, Praeger, Saxl, and Seitz [39] have 
verified the Sims conjecture. An interesting feature of their proof is that it 
involves a result of Gödel on logical compactness. 

4. Algorithms. Given a subgroup G of S„ generated by a set Sf of 
permutations, one is interested in properties of G that can be computed from 
Sf in polynomial time—i.e., in which the number of steps in the calculation is a 
polynomial in n. 

A fundamental algorithm of Sims [120] (independent of the classification) 
asserts that \G\ can be determined in polynomial time. Using the classification 
theorem, Kantor [95] and Luks [100] have established the following further 
result. 
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THEOREM. A composition series for G and an element of prime order p dividing 
\G\ can be determined in polynomial time. 

[Standard proofs of Cauchy's theorem require exponential time for de­
termining an element of order p when p is large. We also note that there are 
many questions about subgroups of a group G for which the question of the 
existence of polynomial-time algorithms remains open.] 

5. The groups of Lie type. Finally, we wish to mention Seitz's work on the 
groups of Lie type, which involves a beautiful interplay between the classifica­
tion theorem, on the one hand, and algebraic group theory, on the other. His 
first investigations focused on conditions which force a given subgroup to be 
contained in a proper parabolic [115]. However, as the statements of most of 
these general results include some exceptional cases, we shall not state them 
here. But in the next section we shall describe his subsequent work on maximal 
subgroups of the groups of Lie type. 

B. Number theory. The classification theorem has already had a number of 
significant applications to number theory and automorphic forms. We describe 
three. 

1. Brauer groups. If L and K are fields with L~D K, the relative Brauer 
group B(L/K) of L over K consists of all "Brauer classes of finite-dimen­
sional central simple AT-algebras split by L." Moreover, K is a global field if K 
is either an algebraic number field or an algebraic function field in one variable 
over a finite field. 

Fein, Kantor, and Schacher have established the following general result 
[51], which utilizes the classification theorem in a critical way. 

THEOREM. If K is a global field and L is a nontrivial finite extension ofK, then 
B(L/K) is infinite. 

That the proof should require the classification theorem is remarkable since 
B(L/K) is an abelian group. However, the theorem reduces to verification of 
the following purely group-theoretic assertion, the only known proof of which 
depends upon the classification theorem. 

THEOREM. If G is a transitive permutation group on a set Q, of cardinality 
> 1, then there exists a prime p such that some element of G of order a power of 

p fixes no point of ti. 

2. Galois groups. Emmy Noether [109] was the first mathematician to 
establish a significant sufficient condition for a finite group to be realizable as 
the Galois group of some finite algebraic extension of the rationals Q, and the 
fundamental question of whether every finite group is so realizable is often 
referred to as "Noether's problem." In a long and difficult paper Shafarevich 
[133] has verified the desired conclusion for arbitrary solvable groups. 

However, very little positive was known about the readability of (non-
abelian) simple groups. Apart from the alternating groups, as recently as 1983 
only the single family PSL2(q) (and then only for certain congruences on q) 
and the one group Sp6(2) had been shown to be Galois groups over Q. [The 
case of Mu was not completed until mid-1984, by Matzat.] 
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It is certainly conceivable that«by sophisticated general methods of algebraic 
number theory and function theory, without recourse to any specific properties 
of groups, one could demonstrate that every finite group generated by involu­
tions—in particular, every simple group—is a Galois group over Q. However, 
such a wonderful result appears to be still far off. 

The classification theorem thus provides added stimulus for considering the 
problem with a fresh eye. Indeed, in the last few years Thompson has brought 
his deep understanding of finite groups to bear on the question and his work 
has already produced striking results. He realized the importance of the 
concept of "rigidity" (previously introduced by Belyï [24]) and saw that it 
could be used in many explicit cases to show that a given group G is a Galois 
group over Q ("rational" rigidity) or over some cyclotomic extension of Q 
(general rigidity). 

The definition of rigidity is slightly simpler when G has a trivial center, so 
we limit ourselves to this case. 

First, a conjugacy class X of elements of G is said to be rational if for 
x e X9 x(x) G Q f° r every irreducible (ordinary) character x of G. 

Next, let Xl9 X2,..., Xk be conjugacy classes of elements of G and set 

A = AG(Xl9 X2,..., Xk) = {(xl9 x2,..., xk)\ Xj G Xi9 xxx2 • • • xk = 1 j . 

With this terminology, we say that A = AG(Xl9 X2,..., Xk) is rigid pro­
vided: 

(1) \A\ = |G|; and 
(2) If (xl9 x2,..., xk) e A, then G = (xv x29..., xk). 
Moreover, we call A rationally rigid if, in addition, 
(3) Xt is rational for all /, 1 < / < fc. 
The importance of rigidity is shown by the following result. 

THEOREM. If G is a group with trivial center which is rigid with respect to 
A = AG( Xl9 X29..., Xk) for suitable conjugacy classes Xv X2,...9Xk9 then G 
is a Galois group over some well-specified cyclotomic extension of Q, and if G is 
rationally rigid with respect to A, then G is a Galois group over Q. 

In all known cases in which rigidity has been verified, k = 3. 
Using this result, Thompson has proved [137]. 

THEOREM. The Fischer-Griess monster Fx is a Galois group over Q. 

Thompson [138, 139] and Feit and Fong [53] have applied the theorem to 
obtain the following Galois realizations. 

THEOREM. The groups PSL3(p), p a prime, p = 1 (mod 4), and G2(p\ pa 
prime are Galois groups over Q. 

Feit, Fong, and Srinivasan [52, 54], Thompson [140], and Walter [150] have 
shown that certain other classical groups, in suitable dimensions and over some 
fields, are Galois groups over Q. 


