Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

There are asymptotically far fewer polytopes than we thought


Authors: Jacob E. Goodman and Richard Pollack
Journal: Bull. Amer. Math. Soc. 14 (1986), 127-129
MSC (1980): Primary 52A25; Secondary 05A15, 14G30, 51M20
DOI: https://doi.org/10.1090/S0273-0979-1986-15415-7
MathSciNet review: 818067
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. N. Alon, The number of polytopes, configurations, and real matroids, preprint. MR 859498
  • 2. J. E. Goodman and R. Pollack, Multidimensional sorting, SIAM J. Comput. 12 (1983), 484-507. MR 707408
  • 3. J. E. Goodman and R. Pollack, Upper bounds for configurations and polytopes in R, Discrete Comp. Geom. (to appear). MR 861891
  • 4. B. Grünbaum, Convex polytopes, Interscience-Wiley, London, 1967. MR 226496
  • 5. V. Klee, The number of vertices of a convex polytope, Canad. J. Math. 16 (1964), 701-720. MR 166682
  • 6. J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275-280. MR 161339
  • 7. I. Shemer, Neighborly polytopes, Israel J. Math. 43 (1982), 291-314. MR 693351

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 52A25, 05A15, 14G30, 51M20

Retrieve articles in all journals with MSC (1980): 52A25, 05A15, 14G30, 51M20


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1986-15415-7

American Mathematical Society