Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Theodore Frankel
Title: Gravitational curvature, an introduction to Einstein's theory
Additional book information: W. H. Freeman and Co., San Francisco, California, 1979, xviii + 172 pp., $8.95. ISBN 0-7167-1062-5.

Author: Hans Stephani
Title: General relativity, an introduction to the theory of the gravitational field
Additional book information: (edited by John Stewart; translated from German by Martin Pollock and John Stewart) Cambridge Univ. Press, New York, New York, 1982, xvi + 298 pp., $49.50. ISBN 0-521-24008-5.

Author: Robert M. Wald
Title: General relativity
Additional book information: University of Chicago Press, Chicago, Illinois, 1984, xiii + 491 pp., $50.00 HB; $30.00 PB. ISBN 0-266-87033-2.

References [Enhancements On Off] (What's this?)

  • 1. H. Bateman, The transformation of coordinates which can be used to transform one physical problem into another, Proc. London Math. Soc. 8 (1910), 469-488.
  • 2. H. Bondi, F. A. E. Pirani and I. Robinson, Gravitational waves in general relativity III. Exact plane waves, Proc. Roy. Soc. London A251 (1959), 519-533. MR 106747
  • 3. E. Cartan, Sur les espaces conformes généralisés et l'Univers optique, C. R. Acad. Sci. Paris 174 (1922), 857-859.
  • 4. E. Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée I; I (suite); II, Ann. Sci. École Norm. Sup. 40 (1923), 325-412; 41 (1924), 1-25; 42 (1925), 17-88. English translation by A. Ashtekar and A. Magnon-Ashtekar, Bibliopolis, Naples, 1985.
  • 5. Subrahmanyan Chandrasekhar, The mathematical theory of black holes, International Series of Monographs on Physics, vol. 69, The Clarendon Press, Oxford University Press, New York, 1983. Oxford Science Publications. MR 700826
  • 6. S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271. MR 425155
  • 7. W. K. Clifford, The common sense of the exact sciences, D. Appleton and Co., New York, 1885.
  • 8. S. Deser and B. Zumino, Consistent supergravity, Phys. Lett. 62B (1976), 335-337. MR 411531
  • 9. S. K. Donaldson, Self-dual connections and the topology of smooth 4-manifolds, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 1, 81–83. MR 682827, https://doi.org/10.1090/S0273-0979-1983-15090-5
  • 10. A. Einstein and N. Rosen, On gravitational waves, J. Franklin Inst. 223 (1937), 43-54.
  • 11. D. Z. Freedman, P. Van Nieuwenhuizen and S. Ferrara, Progress toward a theory of supergravity, Phys. Rev. D13 (1976), 3214-18. MR 462449
  • 12. A. Friedmann, Über die Krümmung des Raumes, Z. Phys. 10 (1922), 377-386.
  • 13. R. P. Geroch, What is a singularity in general relativity?, Ann. Physics 48 (1968), 526-540.
  • 14. K. Gödel, An example of a new type of cosmological solutions of Einstein's field equations of gravitation, Rev. Modern Phys. 21 (1949), 447-450. MR 31841
  • 15. J. N. Goldberg and R. K. Sachs, A theorem on Petrov types, Acta Phys. Polon. 22 Suppl. (1962), 13-23. MR 156679
  • 16. A. Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv. 32 (1958), 248-329. MR 100269
  • 17. S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge Univ. Press, Cambridge, 1973. MR 424186
  • 18. S. W. Hawking and R. Penrose, The singularities of gravitational collapse and cosmology, Proc. Roy. Soc. London A314 (1970), 529-548. MR 264959
  • 19. R. P. Kerr and A. Schild, A new class of vacuum solutions of the Einstein field equations, Atti del Convegno sulla Relatività Generale: Probleme dell'energia e onde gravitazionali, G. Barbèra, Editore, Florence, 1965.
  • 20. T. W. B. Kibble, Lorentz invariance and the gravitational field, J. Math. Phys. 2 (1961), 212-221. MR 127952
  • 21. D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact solutions of Einstein’s field equations, Cambridge University Press, Cambridge-New York, 1980. Edited by Ernst Schmutzer; Cambridge Monographs on Mathematical Physics. MR 614593
  • 22. H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. of Math. (2) 66 (1957), 155-158. MR 88629
  • 23. A. Lichnerowicz, Théories relativistes de la gravitation et de l'électromagnétisme, Masson et Cie, Paris, 1955. MR 71917
  • 24. C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W. H. Freeman and Co., San Francisco, 1973. MR 418833
  • 25. E. T. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3 (1962), 566-578; Errata: Ibid. 4 (1963), 998. MR 141500
  • 26. S. P. Novikov, Topology of foliations, Trudy Moskov. Mat. Obšč 14 (1965), 248-278 = Trans. Moscow Math. Soc. (1965), 268-304. MR 200938
  • 27. I. Ozsvàth and E. Schücking, The finite rotating universe, Ann. Physics 55 (1969), 166-204. MR 252015
  • 28. R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14 (1965), 57-59. MR 172678
  • 29. R. Penrose, Twistor algebra, J. Math. Phys. 8 (1967), 345-366. MR 216828
  • 30. R. Penrose, Techniques of differential topology in relativity, SIAM, Philadelphia, 1972. MR 469146
  • 31. Roger Penrose, Physical space-time and nonrealizable CR-structures, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 3, 427–448. MR 693958, https://doi.org/10.1090/S0273-0979-1983-15109-1
  • 32. R. Penrose and M. A. H. MacCallum, Twistor theory: An approach to the quantisation of fields and space-time, Phys. Rep. 6 (1972), 241-316. MR 475660
  • 33. Roger Penrose and Wolfgang Rindler, Spinors and space-time. Vol. 1, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1984. Two-spinor calculus and relativistic fields. MR 776784
  • 34. I. Robinson, Null electromagnetic fields, J. Math. Phys. 2 (1961), 290-291. MR 127369
  • 35. Ivor Robinson and Andrzej Trautman, Integrable optical geometry, Lett. Math. Phys. 10 (1985), no. 2-3, 179–182. MR 815241, https://doi.org/10.1007/BF00398155
  • 36. I. Robinson and A. Trautman, A generalization of Mariot 's theorem on congruences of null geodesics, Proc. Roy. Soc. London (to appear).
  • 37. D. W. Sciama, On the analogy between charge and spin in general relativity, Recent developments in General Relativity, Pergamon Press and PWN, Oxford and Warsaw, 1962. MR 164767
  • 38. A. H. Taub, Empty space-times admitting a three-parameter group of motions, Ann. of Math. 53 (1951), 472-490. MR 41565
  • 39. Andrzej Trautman, Deformations of the Hodge map and optical geometry, J. Geom. Phys. 1 (1984), no. 2, 85–95. MR 794981, https://doi.org/10.1016/0393-0440(84)90005-6
  • 40. S. Weinberg, Gravitation and cosmology, J. Wiley, New York, 1972.
  • 41. R. O. Wells Jr., The Cauchy-Riemann equations and differential geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 187–199. MR 640945, https://doi.org/10.1090/S0273-0979-1982-14976-X
  • 42. C. N. Yang and R. L. Mills, Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev. 96 (1954), 191-195. MR 65437

Review Information:

Reviewer: Andrzej Trautman
Journal: Bull. Amer. Math. Soc. 14 (1986), 152-158
DOI: https://doi.org/10.1090/S0273-0979-1986-15425-X
American Mathematical Society