Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)



Compact Riemannian manifolds with positive curvature operators

Author: John Douglas Moore
Journal: Bull. Amer. Math. Soc. 14 (1986), 279-282
MSC (1980): Primary 53C20
MathSciNet review: 828826
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [GM] S. Gallot and D. Meyer, Opérateur de courbure et Laplacien des formes différentielles d'une variété riemannienne, J. Math. Pure Appl. 54 (1975), 259-284. MR 454884
  • [GKM] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Math., vol. 55, Springer-Verlag, Berlin, 1968. MR 229177
  • [G] A. Grothendieck, Sur la classification des fibres holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121-138. MR 87176
  • [GL] R. Gulliver and H. B. Lawson, The structure of stable minimal hypersurfaces near a singularity (to appear).
  • John Douglas Moore, On stability of minimal spheres and a two-dimensional version of Synge’s theorem, Arch. Math. (Basel) 44 (1985), no. 3, 278–281. MR 784099,
  • J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113 (1981), no. 1, 1–24. MR 604040,
  • [T] A. Tromba, A general approach to Morse theory, J. Differential Geom. 12 (1977), 47-85. MR 464304
  • [U] K. Uhlenbeck, Morse theory on Banach manifolds, J. Funct. Anal. 10 (1972), 430-445. MR 377979

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 53C20

Retrieve articles in all journals with MSC (1980): 53C20

Additional Information


American Mathematical Society