REALIZING SYMMETRIES OF A SUBSHIFT OF FINITE TYPE
BY HOMEOMORPHISMS OF SPHERES

BY J. B. WAGONER

Let A be a finite, irreducible, zero-one matrix and let $\sigma_A: X_A \rightarrow X_A$ be the corresponding subshift of finite type [F]. Recall from [F] that a Smale diffeomorphism is one with a hyperbolic zero-dimensional chain recurrent set. A well-known theorem of Williams-Smale [Wi] says that there is a Smale diffeomorphism $F_A: S^3 \rightarrow S^3$ so that σ_A is topologically conjugate to the restriction of F_A to the basic set of index one occurring as part of the spectral decomposition. Let Aut(σ_A) denote the group of symmetries of σ_A—that is, the group of homeomorphisms of X_A which commute with σ_A. Here is the corresponding global realization result for these symmetries.

THEOREM. Assume $4 < q$ and let $1 < e < q - 2$. Then there is a Smale diffeomorphism $F_A: S^q \rightarrow S^q$ with a basic set Ω_e of index e (along with other basic sets of index 0, $e + 1$, q) together with a topological conjugacy between σ_A and $F_A|\Omega_e$ so that, given any symmetry g in Aut(σ_A), there is a homeomorphism $G: S^q \rightarrow S^q$ satisfying

(A) G commutes with F_A on all of S^q,
(B) $G|\Omega_e = g$ under the identification between Aut($F_A|\Omega_e$) and Aut(σ_A).

The motivation and the idea for the proof of this geometric result came by analogy from algebraic K-theory and pseudo-isotopy theory. The proof uses Williams’ notion of strong shift equivalence [W1, F], the contractible simplicial complex P_A of topological Markov partitions for σ_A [W1], and structural stability for Smale diffeomorphisms [R, Ro]. We would like to thank C. Pugh for useful discussions about the stability theorem.

The group Aut(σ_A) is often rather large. For example, Aut(σ_2) for the Bernoulli 2-shift σ_2 has been known [H] for some time to contain every finite group and to have elements of infinite order not a power of σ_2. Recently, Boyle and Lind have shown it contains the free nonabelian group on infinitely many generators. Therefore, the group of homeomorphisms of S^q commuting with a certain F_2 is large when $4 < q$. Incidentally, at the present time not much is really known about the structure and other algebraic or homological properties of Aut(σ_2). For some information see [BK] or [W1]. An open and long-standing conjecture is that Aut(σ_2) is generated by σ_2 and elements of finite order.

Here is a rough idea of the proof of the Theorem. The details will appear in [W2]. Let P be an $m \times m$ zero-one matrix and let Q be an $n \times n$ zero-one matrix. Suppose there is an $m \times n$ zero-one matrix R and an $n \times m$ zero-one

Received by the editors September 30, 1985.
1980 Mathematics Subject Classification (1985 Revision). Primary 34C35, 20B27.

1Partially supported by the NSF.
matrix S so that $P = RS$ and $Q = SR$. As in [Wi], this determines a specific conjugacy $c_R: (X_P, \sigma_P) \rightarrow (X_Q, \sigma_Q)$ sending $x = \{x_i\}$ in X_P to $c_R(x) = \{c_R(x_i)\}$ in X_Q, where $c_R(x_i)$ is the unique k such that $R(x_i, k)S(k, x_{i+1}) = A(x_i, x_{i+1}) = 1$. Similarly for c_S. In fact, $c_S c_R = \sigma_P$ and $c_R c_S = \sigma_Q$, so that $c_R \sigma_P = \sigma_Q c_R$ and $c_S \sigma_Q = \sigma_P c_S$. We call c_R and c_S elementary symbolic conjugacies.

On the topological side, let $S^q(m)$ be the standard q-sphere equipped with a fixed handle decomposition with one handle of index zero, m handles of index e, m cancelling handles of index $e + 1$, and one handle of index q. Similarly for $S^q(n)$. One then constructs a Smale diffeomorphism $C_R: S^q(m) \rightarrow S^q(n)$ which is fitted both on the handles of index e and the handles of index $e + 1$ according to the geometric intersection matrix R. Again, similarly for C_S. This is done in such a way that the composition $D_P = C_S C_R: S^q(m) \rightarrow S^q(m)$ is also a Smale diffeomorphism fitted on the e-handles and $(e + 1)$-handles according to the matrix $P = RS$ and $D_Q = C_R C_S: S^q(n) \rightarrow S^q(n)$ is fitted according to $Q = SR$. Observe that $C_R D_P = D_Q C_R$ and $D_P C_S = C_S D_Q$, and therefore C_R and C_S are smooth conjugacies between D_P and D_Q. We call these elementary smooth conjugacies.

Now consider a Smale diffeomorphism $F_P: S^q(m) \rightarrow S^q(m)$ which is fitted on the e-handles and $(e + 1)$-handles by the matrix P. In general, of course, $F_P \neq D_P$. However, under the assumption that $1 < e < q - 2$ we are able to carefully construct F_P, C_R, and C_S in such a way that there is a one-parameter family of Smale diffeomorphisms $F_P(t)$, each of which is fitted on the e-handles and $(e + 1)$-handles by the matrix P, so that $F_P(0) = F_P$, $F_P(1)$ is equal to D_P on a neighborhood of the $(e + 1)$-skeleton, and both $F_P(1)$ and D_P have the point at infinity as a source. Methods of stability theory [R, Ro] can then be used to produce a topological (not smooth) conjugacy between F_P and D_P. We call this a stability conjugacy. Similarly, there is a stability conjugacy between D_Q and F_Q, so that we then get a topological conjugacy F_P and F_Q.

The main theorem is proved by first showing that any symmetry g in $\text{Aut}(\sigma_A)$ can be obtained as the composition of a chain of elementary symbolic conjugacies and powers of shifts, and then by showing this can be mirrored compatibly with a corresponding chain of elementary smooth conjugacies, stability conjugacies, and powers of certain intermediate F_P for different matrices P. The chain starts with the original F_A which is fixed and eventually comes back to it. The composition of the various conjugacies and powers of F_P in the chain give the required homeomorphism G.

The main theorem may well be valid on S^4 also, but our argument seems to require $4 < q$.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720