PERIODIC GEODESICS OF GENERIC NONCONVEX DOMAINS IN \mathbb{R}^2 AND THE POISSON RELATION

VESSELIN M. PETKOV AND LUCHEZAR STOJANOV

1. Introduction. Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, be a bounded connected domain with C^∞ smooth boundary $\partial \Omega$. Consider the eigenvalues $\{\lambda_j^2\}_{j=1}^\infty$ corresponding to the Dirichlet problem for the Laplacian

$$-\Delta u = \lambda^2 u \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega.$$

The Poisson relation for $\sigma(t) = \sum_j \cos \lambda_j t$ has the form

$$\text{singsupp}(\sigma(t)) \subset \bigcup_{\gamma \in \mathcal{L}_\Omega} \{-T_\gamma\} \cup \{0\} \cup \bigcup_{\gamma \in \mathcal{L}_\Omega} \{T_\gamma\}.$$

Here \mathcal{L}_Ω is the union of all generalized periodic geodesics γ in $\overline{\Omega}$, including those lying entirely on $\partial \Omega$, and T_γ is the period (length) of γ (see [1]).

Generalized geodesics are projections on $\overline{\Omega}$ of the generalized bicharacteristics of $\partial^2 \Omega - \Delta$, introduced by Melrose and Sjöstrand [6]. We have proved in [8, 9] that for generic strictly convex domains in \mathbb{R}^2 the relation (2) becomes an equality and the spectrum of (1) determines the lengths of all periodic geodesics (see [5] for related results). The purpose of this announcement is to prove the same result for generic nonconvex domains in \mathbb{R}^2.

2. Main results. In the analysis of (2) for nonconvex domains three difficulties appear: (A) the existence of periodic geodesics having gliding segments on $\partial \Omega$ and linear segments in the interior of Ω, (B) some linear segment l of a periodic geodesic could be tangent to $\partial \Omega$ at some interior point of l, (C) the linear Poincaré map P_γ of a reflecting periodic geodesic γ could contain in its spectrum 1 or $\sqrt{\mu}$ with $\mu \in \mathbb{N}$. We refer to [3] for the precise definition of reflecting geodesics and the related Poincaré map. A linear segment is a set $l = [x, y] = \{z; z = \alpha x + (1 - \alpha)y, \ 0 \leq \alpha \leq 1\}$, while a gliding segment is an arc $\delta \subset \partial \Omega$. We show below that generically for domains in \mathbb{R}^2 the phenomena (A), (B), (C) cannot occur. We begin by assuming $\Omega \subset \mathbb{R}^2$.

Set $\partial \Omega = X$ and consider the space $C^\infty_{\text{emb}}(X, \mathbb{R}^2)$ of all C^∞ smooth embeddings of X into \mathbb{R}^2 with the Whitney topology [2]. For $f \in C^\infty_{\text{emb}}(X, \mathbb{R}^2)$ we denote by $\Omega_f \subset \mathbb{R}^2$ the bounded domain with boundary $f(X)$. A set $\mathcal{R} \subset C^\infty_{\text{emb}}(X, \mathbb{R}^2)$ will be called residual if \mathcal{R} is a countable intersection of open dense sets.

Theorem 1. Let Ω be a domain with boundary X. There exists a residual set $\mathcal{R} \subset C^\infty_{\text{emb}}(X, \mathbb{R}^2)$ such that for every $f \in \mathcal{R}$ there are no generalized periodic geodesics $\gamma \in \mathcal{L}_\Omega$, having at least one gliding segment on $f(X)$ and
PERIODIC GEODESICS OF NONCONVEX DOMAINS IN \mathbb{R}^2

at least one linear segment in the interior of Ω_f. Moreover, for $f \in \mathcal{R}$ every reflecting geodesic $\gamma \in \mathcal{L}_\Omega_f$ has Poincaré map P_γ whose spectrum does not contain $\sqrt{1}$ for every $p \in \mathbb{N}$.

Remark 1. The above result has been conjectured in [9]. For generic strictly convex domains in \mathbb{R}^2 the conclusion concerning Poincaré map was established by Lazutkin [4].

Theorem 2. Let Ω be a domain with boundary X. There exists a residual set $\mathcal{R} \subset C^\infty_{\text{emb}}(X, (\mathbb{R}^2)$ such that for every $f \in \mathcal{R}$ there are no generalized periodic geodesics $\gamma \in \mathcal{L}_\Omega_f$ containing at least one linear segment l tangent to $f(X)$ at some interior point of l.

Remark 2. According to Theorems 1 and 2, for generic domains in \mathbb{R}^2 every periodic geodesic, different from the boundary, is a reflecting one. The above assertion about Poincaré map and Theorem 2 admit a generalization for domains in \mathbb{R}^n which will be published elsewhere.

Combining the rational independence of periods of reflecting geodesics for generic domains, established in [8, 9], Theorems 1 and 2 and the result in [3], we obtain

Theorem 3. Under the assumptions and notations of Theorem 1, for every $f \in \mathcal{R}$ the Poisson relation (2) becomes an equality where $\sigma(t)$ is related to the eigenvalues for problem (1) in Ω_f with boundary condition on $f(X)$ and the unions in (2) are taken over all generalized periodic geodesics in \mathcal{L}_Ω_f.

3. Idea of the proof of Theorem 1. Let $f \in C^\infty_{\text{emb}}(X, \mathbb{R}^2)$ and let γ be a generalized geodesic in \mathcal{L}_Ω_f having linear segments in $\mathbb{R}^2 \setminus f(X)$. Assume γ antisymmetric, that is γ does not contain a linear segment l orthogonal to $f(X)$ at some end point of l. In this case there are different points $y_i = f(x_i), i = 1, \ldots, s$ on $f(X)$, an integer $k \geq s$ and a surjection $\omega: \{1, \ldots, k\} \to \{1, \ldots, s\}$ with $\omega(1) = 1, \omega(2) = 2, \omega(k) = s$, so that the linear segments $l_j = [y_\omega(j), y_\omega(j+1)], j = 1, \ldots, k - 1$ are successive segments of γ with reflection points $y_\omega(j), j = 2, \ldots, k - 1$, the curvatures of $f(X)$ at y_1 and y_k vanish and l_1 and l_{k-1} are tangent to $f(X)$ at y_1 and y_k respectively.

Setting $\omega(1) = \omega(k+1)$, we have $\omega(i) \neq \omega(i+1)$ for $i = 1, \ldots, k$ and $\{\omega(i), \omega(i+1)\} \neq \{\omega(j), \omega(j+1)\}$ whenever $1 \leq i < j \leq k - 1$. The maps having the properties listed above will be called admissible antisymmetric. Let $Z^s = \{(z_1, \ldots, z_s) \in Z^s; z_i \neq z_j$ for $i \neq j\}$. For $i = 1, \ldots, s$, set $I_i = \{j; there exists$t = 1, \ldots, k - 1$with$\{i, j\} = \{\omega(t), \omega(t + 1)\}$and denote by U_{ω} the set of those $z \in (\mathbb{R}^2)^s$ such that $z_i \notin$ convex hull $\{z_j; j \in I_i\}$ for every $i = 1, \ldots, s$. Finally, consider the map $F: U_{\omega} \to \mathbb{R}$ given by

$$F(z) = \sum_{i=1}^{k-1} \|z_{\omega(i)} - z_{\omega(i+1)}\|.$$

It is clear that $x' = (x_2, \ldots, x_{s-1})$ is a critical point of $F \circ f^s(x_1, x', x_s)$ considered as a function of $z' = (z_2, \ldots, z_{s-1}) \in X^{(s-1)}$, where $f^s(x) = (f(x_1), \ldots, f(x_s))$. Fix k, s, F and an admissible antisymmetric map ω and denote by T_{ω} the set of those $f \in C^\infty_{\text{emb}}(X, \mathbb{R}^2)$ such that if $x = (x_1, \ldots, x_s) \in$
$X^{(s)}$, $f^s(x) \in U_\omega$, $\text{grad}_{x'}(F \circ f^s)(x) = 0$ and the curvatures of $f(X)$ at $f(x_1)$ and $f(x_s)$ vanish, then we have $(f(x_2) - f(x_1), n_{x_1}) = 0$, n_{x_1} being the normal to $f(X)$ at x_1 and (\cdot, \cdot) the scalar product in \mathbb{R}^3. Our aim is to show that T_ω is residual in $C^b_{\text{emb}}(X, \mathbb{R}^2)$. To do this, we use the s-fold bundle of the 2-jets. Namely, let $\alpha: J^2(X, \mathbb{R}^2) \to \mathbb{R}^2$ and $\beta: J^2(X, \mathbb{R}^2) \to \mathbb{R}^2$ be the source and the target maps (see [2]). Set

$$M = \left(\alpha^{s}\right)^{-1}(X^{(s)}) \cap \left(\beta^{s}\right)^{-1}(U_\omega) \cap V,$$

where V is the set of those $(j^2f_1(x_1), \ldots, j^2f_s(x_s)) \in \left(J^2(X, \mathbb{R}^2)\right)^s$ with $df_i(x_i) \neq 0$ for every $i = 1, \ldots, s$. Clearly, M is an open submanifold of $J^2(X, \mathbb{R}^2) = \left(\alpha^s\right)^{-1}(X(s))$. To describe the above situation, we introduce the set Σ of those $\sigma = (j^2f_1(x_1), \ldots, j^2f_s(x_s)) \in M$ such that $\text{grad}_{x'}(F \circ f^s)(x) = 0$, the curvature of $f_1(X)$ at $f_1(x_1)$ and that of $f_s(X)$ at $f_s(x_s)$ vanish and the vector $f_2(x_2) - f_1(x_1)$ is collinear with the tangent to $f_1(X)$ at $f_1(x_1)$. The main difficulty is to show that Σ is a smooth submanifold of M with codim $\Sigma = s + 1$. Therefore, by applying the multijet transversality theorem in [2], we prove that T_ω is residual in $C^b_{\text{emb}}(X, \mathbb{R}^2)$. Similarly we treat admissible symmetric maps ω which are related to geodesics on $f(X)$ having segments l orthogonal to $f(X)$ at some end point $y \in f(X)$ of l. Then $\bigcap_\omega T_\omega$, where ω runs over all admissible maps, is residual in $C^b_{\text{emb}}(X, \mathbb{R}^2)$.

For the proof of the second part of Theorem 1 we use essentially the representation of Poincaré map P_γ related to a reflecting geodesic γ, found by Petkov and Vogel [7]. We introduce a corresponding singular set Σ_1 and again the main point is to prove that Σ_1 can be covered by a countable union of smooth manifolds having codimension $s + 1$.

A similar approach is used for the proof of Theorem 2.

REFERENCES

4. V. F. Lazutkin, Convex billiard and eigenfunctions of the Laplace operator, Leningrad University, 1981. (Russian)

INSTITUTE OF MATHEMATICS, BULGARIAN ACADEMY OF SCIENCES, P. O. BOX 373, 1090 SOFIA, BULGARIA