Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 838794
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Domingo Herrero
Title: Approximation of Hilbert space operators,
Additional book information: Pitman Publishing Inc., Boston, 1982, xiii + 255 pp., $23.95. ISBN 0-273-08579-4.

Author: Constantin Apostol
Title: Volume II Approximation of Hilbert space operators,
Additional book information: Lawrence Fialkow, Domingo Herrero and Dan Voiculescu, Pitman Publishing Inc., Boston, 1984, x + 524 pp., $29.95. ISBN 0-273-08641-3.

References [Enhancements On Off] (What's this?)

  • [A1] C. Apostol, On the norm-closure of nilpotents, Rev. Roumaine Math. Pures Appl. 19 (1974), 277-282. MR 361875
  • [A2] C. Apostol, On the norm-closure of nilpotents. III, Rev. Roumaine Math. Pures Appl. 21 (1976), 143-153. MR 417829
  • [A3] C. Apostol, Universal quasinilpotent operators, Rev. Roumaine Math. Pures Appl. 25 (1980), 135-138. MR 577021
  • [AF] C. Apostol and C. Foiaş, On the distance to bi-quasitriangular operators, Rev. Roumaine Math. Pure Appl. 20 (1975), 261-265. MR 370238
  • [AFP] C. Apostol, C. Foiaş and C. M. Pearcy, That quasinilpotent operators are norm-limits of nilpotent operators revisited, Proc. Amer, Math. Soc. 73 (1979), 61-64. MR 512059
  • [AFV1] C. Apostol, C. Foiaş and D. Voiculescu, Some results on quasitriangular operators. II-VI, Rev. Roumaine Math. Pures Appl. 18 (1973), 159-181, 309-324, 487-514. MR 333785
  • [AFV2] C. Apostol, C. Foiaş and D. Voiculescu, On the norm-closure of nilpotents. II, Rev. Roumaine Math. Pures Appl. 19 (1974), 549-577. MR 355657
  • [AHV] C. Apostol, D. A. Herrero and D. Voiculescu, The closure of the similarity orbit of a Hilbert space operator, (NS) Bull. Amer. Math. Soc. 6 (1982), 421-426. MR 648526
  • [AV] C. Apostol and D. Voiculescu, On a problem of Halmos, Rev. Roumaine Math. Pures Appl. 19 (1974), 283-284. MR 338810
  • [AS] N. Aronszajn and K. T. Smith, Invariant subspaces of completely continuous operators, Ann. of Math. (2) 60 (1954), 345-350. MR 65807
  • [BH1] J. Barria and D. A. Herrero, Closure of similarity orbits of Hilbert space operators. IV. Normal operators, J. London Math. Soc. (2) 17 (1978), 525-536. MR 512781
  • [BH2] J. Barria and D. A. Herrero, Closure of similarity orbits of nilpotent operators. I. Finite rank operators, J. Operator Theory 1 (1979), 177-185. MR 532873
  • [B1] I. D. Berg, An extension of the Weyl-von Neumann theorem to normal operators, Trans. Amer. Math. Soc. 160 (1971), 365-371. MR 283610
  • [B2] I. D. Berg, On approximation of normal operators by weighted shifts, Michigan Math. J. 21 (1974), 377-383. MR 370235
  • [BDF1] L. G. Brown, R. G. Douglas and P. A. Fillmore, Extensions of C, Bull. Amer. Math. Soc. 79 (1973), 973-978. MR 346540
  • [BDF2] L. G. Brown, R. G. Douglas and P. A. Fillmore, Extensions of C, Ann. of Math. (2) 105 (1977), 265-324. MR 458196
  • [DS] N. Dunford and J. T. Schwartz, Linear operators, Part II: Spectral theory. Self-adjoint operators in Hilbert space, Interscience, New York and London, 1963. MR 188745
  • [FPV] C. Foiaş, C. M. Pearcy and D. Voiculescu, The staircase representation of a biquasitriangular operator, Michigan Math. J. 22 (1975), 343-352. MR 405146
  • [Ha1] P. R. Halmos, Quasitriangular operators, Acta. Sci. Math. (Szeged) 29 (1968), 283-393. MR 234310
  • [Ha2] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933. MR 270173
  • [Ha3] P. R. Halmos, Ten years in Hilbert space, Integral Equations Operators Theory 2 (1979), 529-564. MR 555777
  • [H1] D. A. Herrero, Normal limits of nilpotent operators, Indiana Univ. Math. J. 23 (1974), 1097-1108. MR 350476
  • [H2] D. A. Herrero, Universal quasinilpotent operators, Acta Sci. Math. (Szeged) 38 (1976), 291-300. MR 442728
  • [R] G.-C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472. MR 112040
  • [S] W. Sikonia, The von Neumann converse of Weyl's theorem, Indiana Univ. Math. J. 21 (1971), 121-123. MR 285928
  • [V1] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), 97-113. MR 415338
  • [V2] D. Voiculescu, Norm-limits of algebraic operators, Rev. Roumaine Math. Pures Appl. 19 (1974), 371-378. MR 343082
  • [W] H. Weyl, Über beschrankte quadratische Formen deren Differenzvollstetig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392.

Review Information:

Reviewer: Kenneth R. Davidson
Journal: Bull. Amer. Math. Soc. 15 (1986), 91-98
DOI: https://doi.org/10.1090/S0273-0979-1986-15447-9
American Mathematical Society