We consider operators in the form

\[A = -\nabla \cdot \rho \nabla + V(x) \]

on \(\mathbb{R}^n \), where metric \(\rho = (\rho_{ij}(x)) \geq 0 \) and potential \(V(x) \geq 0 \). The classical Weyl principle for asymptotic distribution of large eigenvalues of \(A \) states that the counting function

\[N(\lambda) = \# \{ \lambda_j \leq \lambda \} \sim \text{Vol}\{ (x; \xi) | \rho \xi \cdot \xi + V(x) \leq \lambda \} \]

as \(\lambda \to \infty \).

(See for instance [Gu].) Integrating out variable \(\xi \) we can rewrite it as

\[N(\lambda) \sim \frac{\omega_n}{(2\pi)^n} \int (\lambda - V)^{n/2} \frac{dx}{\sqrt{\det \rho}}. \]

If potential \(V \) and metric \(\rho \) are assumed to be homogeneous in \(x \), \(V(x) = |x|^a V(x') \); \(\rho_{ij}(x) = |x|^b \rho_{ij}(x'), x' = x/|x| \), then (1) reduces to

\[N(\lambda) \sim C \lambda^{n/2+(1-\beta/2)n/\alpha} \int V^{-\alpha/\beta}(1 - \beta/2) \frac{dS}{\sqrt{\det \rho}}; \]

integration over the unit sphere \(S \) with constant

\[C = \frac{\omega_n}{(2\pi)^n \alpha} B \left(\frac{n}{2} + 1; \frac{n}{\alpha} (1 - \beta/2) \right), \]

which depends on the volume \(\omega_n \) of the unit sphere in \(\mathbb{R}^n \) and the beta function.

Assuming \(\beta < 2 \) we see that integral (2) becomes divergent if \(V(x') \) vanishes to a sufficiently high order. The simplest such potential is \(V(x, y) = |x|^\alpha |y|^\beta \) on \(\mathbb{R}^n + \mathbb{R}^m \).

The Weyl (volume counting) principle, when applied to the corresponding Schrödinger operator \(-\Delta + V(x)\), fails to predict discrete spectrum below any energy level \(\lambda > 0 \). However, as was shown by D. Robert [Ro] and B. Simon [Si], \(A \) has purely discrete spectrum \(\{ \lambda_j \} \to +\infty \) (for qualitative explanation of this phenomenon see [Fe]). Moreover, the “nonclassical” asymptotics of \(N(\lambda) \) was derived for such \(A \).

Recently M. Solomyak [So] studied a general class of Schrödinger operators

\[-\Delta + V(x) \]

with homogeneous potentials \(V \) subject to the following constraint:

(A) zeros of \(V \), \(\{ x : V(x) = 0 \} \) form a smooth cone \(\Sigma \) in \(\mathbb{R}^n \) of dimension \(m \), and \(V \) vanishes on \(\Sigma \) “uniformly” to order \(b > 0 \).

Introducing variables \(x \in \Sigma \) and \(y \in N_x \) (the normal to \(\Sigma \) at \(\{ x \} \)), hypothesis (A) means that there exists

\[\lim_{t \to 0} t^{-b} V(x + ty) = V_0(x, y). \]

Received by the editors November 18, 1985.

©1986 American Mathematical Society

0273-0979/86 $1.00 + $0.25 per page

233
It is easy to see that $V_0(x,y)$ has mixed homogeneity

$$V_0(x,y) = |x|^a |y|^b V_0(x', y'); \quad a + b = \alpha$$

and V_0 approximates V in a small conical neighborhood Σ_ϵ of Σ:

$$\Sigma_\epsilon = \{ x + y | x \in \Sigma; |y| < \epsilon |x| \}.$$

Under hypothesis (A) M. Solomyak [So] derived asymptotics of $N(\lambda)$ for such operators $A = -\Delta + V(x)$ in terms of eigenvalues $\{\lambda_j(x)\}_1^\infty$ of an auxiliary family of Schrödinger operators $\{L(x) = -\Delta_y + V_0(x, y)\}_{x \in \Sigma}$. Namely,

$$N(\lambda) \sim C \lambda \frac{m}{\pi} \left(1 + \frac{2 + b}{a} \right) \int_{\Sigma'} \sum_{j=1}^{\infty} \lambda_j(x')^{-m(2+b)/2a} dS,$$

the integral is over $\Sigma' = \Sigma \cap \Sigma$ (unit sphere).

Notice that each operator $L(x)$ has “classical type,” so Weyl’s principle (2) applies to $\{\lambda_j(x)\}_1^\infty$,

$$\#\{\lambda_j(x) \leq \lambda\} \sim c(x) \lambda^{(n-m)(1/2+1/b)}.$$

Let us also observe that a polynomial asymptotics of $N(x) \sim c \lambda^p$ implies convergence of the series

$$\sum_{j=1}^{\infty} \lambda_j^{-q} < \infty, \text{ with any } q > p.$$

Hence by (5) the sum in (4) converges provided

$$q = m(2+b)/2a > p = (n-m)(1/2 + 1/b).$$

Condition (6) is sufficient for validity of (4). In the critical case $q = p$ an additional log λ factor appears in (4).

The method of [So] was based on the variational formulation of the problem and certain eigenvalue estimates for Schrödinger operators in conical regions obtained in [Ros].

In the present paper we shall outline a different approach based on pseudodifferential calculus with operator-valued symbols in the spirit of [Ro]. This method allows us to recover Solomyak’s result (4) and to extend it in various directions, including operators of the form $-\nabla \cdot \rho \nabla + V(x)$.

We propose the following principle, which governs nonclassical asymptotics: the main contribution to $N(\lambda)$ comes from the degeneracy set Σ (critical set) of V.

According to this principle we want to “localize” A to a small (conical) neighborhood of Σ. Precisely, let us introduce the “model” operator

$$A_0 = -\Delta_\Sigma + L(x) = -\Delta_\Sigma + [-\Delta_N - 2 \nabla_x \cdot \rho' \nabla_y + V_0(x,y)]$$

on the manifold $\Sigma = \bigcup_{x \in \Sigma} N_x$, normal bundle to Σ, where Δ_Σ, Δ_N are the Laplace-Beltrami operators on Σ and the normal space, $N = N_x$, with respect to the metrics induced by ρ_{ij}, and ρ' is the “off diagonal” part of ρ.

Writing $A = -\nabla \cdot \rho \nabla + V$ in normal coordinates (x,y) one can show that $A = A_0$ “small perturbation” in a conical neighborhood Σ_ϵ of Σ. So we expect $N(\lambda; A) \sim N(\lambda; A_0)$, as $\lambda \to \infty$.

$$A_0 = -\Delta_\Sigma + L(x) = -\Delta_\Sigma + [-\Delta_N - 2 \nabla_x \cdot \rho' \nabla_y + V_0(x,y)]$$
To study the eigenvalue distribution one usually works with certain integral "transforms" of \(N(\lambda) \), like \(\text{tr} e^{-tA} = \int_{-\infty}^{+\infty} e^{-\lambda t} dN(\lambda) \) or \(\text{tr}(\zeta + A)^{-l} = \int_{-\infty}^{+\infty} (\zeta + \lambda)^{-l} dN(\lambda) \).

We prefer to work with the latter. Once the asymptotics

\[
\text{tr}(\zeta + A)^{-l} \sim c_0 \zeta^{-l+p} \quad \text{as} \quad \zeta \to \infty
\]

is established for \(\text{tr} R^l_\zeta \) one can go back to the asymptotics of \(N(\lambda) \sim c \lambda^p \), as \(\lambda \to \infty \), by the Tauberian Theorem of M. V. Keldysh (see \[Ro\]). The relation between the two constants is \(c = c_0/pB(p; l - p) \).

So we need to establish (8).

Operator \(A \) can be thought of as a differential operator on \(\Sigma \) with operator-valued symbol \(\sum g^{ij} \xi_i \xi_j + L(x) \), where metric \(g = \rho_\Sigma - \rho^* \rho^{-1}_N \rho' \) on \(\Sigma \) is constructed from the tangent \(\rho_\Sigma \) and normal \(\rho_N \) components of \(\rho \). Then the parametrix (approximate inverse) of \((\zeta + A_0)^{-l} \) can be constructed as an operator-valued \(\Psi \text{DO} K = K^{(l)}_\zeta \) with symbol

\[
\sigma_K = \left[\zeta + \sum g^{ij} \xi_i \xi_j + L(x) \right]^{-l}.
\]

According to our principle we want to localize kernels \(R^l_\zeta = (\zeta + A)^{-l} \); \(\tilde{R}^l = (\zeta + A_0)^{-l} \) and \(K^{(l)}_\zeta \) to a small conical neighborhood \(\Sigma_\varepsilon \) of \(\Sigma \). Let us introduce a cut-off function

\[
\chi_\varepsilon = \begin{cases} 1 & \text{on } \Sigma_\varepsilon, \\ 0 & \text{outside}, \end{cases}
\]

and define an orthogonal projection \(P_\varepsilon u = \chi_\varepsilon u \) from \(L^2(\mathbb{R}^n) \) onto \(L^2(\Sigma_\varepsilon) \).

The following lemma plays the central role in the localization procedure.

Lemma. All traces below are equivalent as \(\zeta \to \infty \).

(i) \(\text{tr}(\zeta + A)^{-l} \sim \text{tr} P(\zeta + A)^{-l} P \),

(ii) \(\text{tr}(\zeta + A_0)^{-l} \sim \text{tr} P(\zeta + A_0)^{-l} P \),

(iii) \(\text{tr} K^{(l)}_\zeta \sim \text{tr} PK^{(l)}_\zeta P \),

(iv) traces of "truncated" operators : \(P(\zeta + A)^{-l} P, P(\zeta + A_0)^{-l} P, \) and \(PK^{(l)}_\zeta P \) are all equivalent.

From the lemma follows

\[
\text{tr}(\zeta + A)^{-l} \sim \text{tr} K^{(l)}_\zeta \quad \text{as} \quad \zeta \to \infty.
\]

Now it remains to compute the trace of an operator-valued \(\Psi \text{DO} K^{(l)}_\zeta \)

\[
\text{tr} K^{(l)}_\zeta = \int \int_{\Sigma} \left[\zeta + \sum \zeta g^{ij} \xi_i \xi_j + \lambda_k(x) \right]^{-l} d\xi dx.
\]

Integrating out variables \(\xi \), using homogeneity of \(\lambda_j(x) \) and \(\rho(x) \), and introducing "polar coordinates" on \(\Sigma \) to reduce integration over the cone \(\Sigma \) to a subset \(\Sigma' = \Sigma \cap S \), we get

\[
\text{tr} K^{(l)}_\zeta = C_0 \zeta^{-l+m(1/2+\theta)} \int_\Sigma \int_{\Sigma'} \frac{\sum \lambda_j(x')^{-m\theta} dx'}{\sqrt{\det g^{ij}(x')}}
\]
with constants
\[s = \frac{\beta b + 2a}{2 + b}; \quad \theta = \frac{1}{s}(1 - \beta/2); \quad C_0 = \int_0^\infty r^m(1-\beta/2)(1-r^s)^{m/2-1}dr. \]

Remembering that \(\{\lambda_j(x')\} \) obey the classical asymptotics (5) with exponent \(p = (n - m)(2 + b)/2b \), we obtain a sufficient condition of convergence of series (11)
\[m\theta = \frac{m}{s}(1 - \beta/2) > \frac{(n - m)(2 + b)}{2b} \quad \text{or} \quad \frac{m(2 - \beta)}{b + 2a} > \frac{n - m}{b}. \]

Thus we have established the following

THEOREM. If operator \(A = -\nabla \cdot \rho \nabla + V \) with homogeneous potential \(V(x) = |x|^\alpha V(x') \geq 0 \) and nondegenerate metric \(\rho_{ij}(x) = |x|^{\beta} \rho_{ij}(x') > 0 \) satisfies hypothesis (A), then spectral function \(N(\lambda) \) of \(A \) admits the nonclassical asymptotics
\[N(\lambda) \sim C\lambda^{m(1/2+\theta)} \int_{\Sigma'} \sum_j \lambda_j(x')^{-m\theta} \frac{dx'}{\sqrt{\det g^{ij}(x')}}. \]

provided sufficient condition (13) holds. The metric \((g^{ij}) \) on \(\Sigma \) is obtained from components of metric \(\rho \).

REMARKS. (i) Formula (14) includes both the classical formula (2) with \(\beta = 0 \) and \(s = a \) (i.e., \(b = 0 \)) and all previously studied nonclassical asymptotics \([\text{Ro}, \text{Si}, \text{So}]\) (the latter corresponds to \(\beta = 0 \)).

(ii) In the critical case (equality \(m\theta = p \) in (13)) an additional \(\log \lambda \) factor appears in (16). The argument requires some modification: Before passing to the limit in the sum \(\sum_1^\infty \lambda_j^{-m\theta} \) and integration over \(\Sigma \) one has to "localize" \(K^{(i)} \) to a compact region in \(\Sigma \).

We shall illustrate our theorem and conditions by the following

EXAMPLE. Take scalar metric \((\rho_{ij}) = \rho = (t^2 + |x|^2)^{\beta/2}I_{2n} \) and potential \(V = (t^2 - |x|^2)^{\beta/2} \) in the space \(\mathbb{R}^{2n} = \{(t, x): t \in \mathbb{R}; x \in \mathbb{R}^{n-1}\} \). The degeneracy set of \(V \) is the standard cone \(\Sigma = \{(t, x): t = \pm |x|\} \) in \(\mathbb{R}^n \).

Direct calculation shows: \(a = b = \alpha/2 \) and \(V_0(x, y) = |x|^{\alpha/2}|y|^{\alpha/2} \).

Condition (15) for convergence of the series of eigenvalues \(\sum_j \lambda_j^{-(n-1)\theta} \) of the operator \(L(x) = -d^2/dy^2 + |y|^{\alpha/2} \) on \(\mathbb{R} \) becomes
\[\frac{\beta + 2}{2 - \beta} < n - 1 \quad \text{or} \quad \beta < \frac{2(n - 2)}{n}, \]
and the eigenvalue asymptotics takes a form
\[N(\lambda) \sim C\lambda^{(n-1)(1/2+\theta)} \sum_1^\infty \lambda_j^{-(n-1)\theta} \quad \text{with} \quad \theta = \frac{(4 + \alpha)(2 - \beta)}{2\alpha(\beta + 2)}. \]

REFERENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS, CASE WESTERN RESERVE UNIVERSITY, CLEVELAND, OHIO 44106