Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Wolfgang Wasow
Title: Linear turning point theory
Additional book information: Applied Mathematical Sciences, vol. 54, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1985, ix + 246 pp., $38.00. ISBN 0-387-96046-5.

References [Enhancements On Off] (What's this?)

  • 1. R. C. Ackerberg and R. E. O'Malley, Boundary layer problems exhibiting resonance, Studies in Appl. Math. 49(1970), 277-295. MR 269940
  • 2. G. B. Airy, On the intensity of light in the neighborhood of a caustic, Trans. Cambridge Philos. Soc. 6 (1838), 379-402.
  • 3. V. I. Arnol'd, On matrices depending on parameters, Uspehi Mat. Nauk 26, No. 2(1971), 101-114; English transl. in Russian Math. Surveys 26, No. 2(1971), 29-43. MR 301242
  • 4. V. I. Arnol′d, \cyr Dopolnitel′nye glavy teorii obyknovennykh differentsial′nykh uravneniĭ, “Nauka”, Moscow, 1978 (Russian). MR 526218
  • 5. M. A. Evgrafov and M. V. Fëdoryuk, Asymptotic behavior as λ → 0 of the solution of the equation w"(z) - p(z, λ)w(z) = 0 in the complex z-plane, Uspehi Mat. Nauk 21, No. 1 (127) (1966), 3-50. English transl. in Russian Math. Surveys 21 (1966), 1-48. MR 209562
  • 6. R. Gans, Fortpflanzung des Lichts durch ein inhomogenes Medium, Ann. Phys. 47 (1915), 709-736.
  • 7. Brian D. Hassard, Nicholas D. Kazarinoff, and Yieh Hei Wan, Theory and applications of Hopf bifurcation, London Mathematical Society Lecture Note Series, vol. 41, Cambridge University Press, Cambridge-New York, 1981. MR 603442
  • 8. Rudolph E. Langer, On the asymptotic solutions of differential equations, with an application to the Bessel functions of large complex order, Trans. Amer. Math. Soc. 34 (1932), no. 3, 447–480. MR 1501648, https://doi.org/10.1090/S0002-9947-1932-1501648-5
  • 9. R. E. Langer, The asymptotic solutions of ordinary linear differential equations of the second order, with special reference to the Stokes phenomenon, Bull. Amer. Math. Soc. 40 (1934), 545-582.
  • 10. C. C. Lin, The theory of hydrodynamic stability, Cambridge Univ. Press, Cambridge, 1966. MR 200014
  • 11. Y. Sibuya, Global theory of a second order linear differential equation with a polynomial coefficient, North-Holland Math. Studies no. 18, North-Holland-American Elsevier Publ. Co., Amsterdam-New York, 1975. MR 486867
  • 12. W. Wasow, Asymptotic expansions for ordinary differential equations, Interscience Publ., New York, 1965.

Review Information:

Reviewer: Nicholas D. Kazarinoff
Journal: Bull. Amer. Math. Soc. 15 (1986), 252-254
DOI: https://doi.org/10.1090/S0273-0979-1986-15496-0
American Mathematical Society