ARGUESIAN LATTICES WHICH ARE NOT LINEAR

MARK D. HAIMAN

ABSTRACT. A linear lattice is one representable by commuting equivalence relations. We construct a sequence of finite lattices \(A_n \) \((n \geq 3)\) with the properties: (i) \(A_n \) is not linear, (ii) every proper sublattice of \(A_n \) is linear, and (iii) any set of generators for \(A_n \) has at least \(n \) elements. In particular, \(A_n \) is then Arguesian for \(n \geq 7 \). This settles a question raised in 1953 by Jónsson.

1. Introduction. A lattice \(L \) is linear if it is representable by commuting equivalence relations. Jónsson [6] showed that any such lattice is Arguesian. Numerous equivalent forms of the Arguesian law are now known; it is a strong condition with important applications in coordinatization theory [1, 2]. Nevertheless, the question raised by Jónsson, whether every Arguesian lattice is linear, has remained open until now.

Here we describe an infinite family \(\{A_n\} \) \((n \geq 3)\) of nonlinear lattices, Arguesian for \(n \geq 7 \) (and possibly for \(n \geq 4)\), settling Jónsson's question in the negative. Actually, we obtain more: a specific infinite sequence of identities strictly between Arguesian and linear, and a proof that the universal Horn theory of linear lattices is not finitely based.

2. The lattices \(A_n \). Let \(n \geq 3 \). In what follows, all indices are modulo \(n \), i.e., \(x_{i+1} \) means \(x_0 \) when \(i = n - 1 \), etc. Let \(L_n \) be the lattice of all subspaces of a vector space \(v \) \((\dim v = 2n)\) over a prime field \(K \) with at least 3 elements. Let \(\{\alpha_0, \ldots, \alpha_{n-1}, \beta_0, \ldots, \beta_{n-1}\} \) be a basis of \(v \). Let

\[
(1) \quad m = \langle \alpha_0, \ldots, \alpha_{n-1} \rangle, \quad q_i = \langle \{\alpha_j | j \neq i\} \rangle, \quad p_i = q_i \land q_{i+1},
\]

\[
q_i = \langle \{\alpha_j \rangle, \quad r_i = m \lor \langle \beta_i \rangle, \quad s_i = r_{i-1} \lor r_i,
\]

where \(\langle \cdots \rangle \) denotes linear span. Let

\[
(2) \quad \tilde{A}_n = [0, m] \cup [m, v] \cup \bigcup_i [p_i, r_i] \cup \bigcup_i [q_i, s_i],
\]

where \([x, y] = \{z | x \leq z \leq y\} \).

\(\tilde{A}_n \subseteq L_n \) is a sublattice; the intervals in the union (2) are its maximal complemented intervals, or blocks; they are the blocks of a tolerance relation on \(\tilde{A}_n \) [5]; as such, the set \(S \) of blocks acquires a lattice structure; specifically, \(0_S = [0, m], 1_S = [m, v], a_i = [p_i, r_i] \) are atoms, \(b_i = [q_i, s_i] \) are coatoms, and \(a_i < b_i, b_{i+1} \) defines the order relation.

Let \(\overline{m} \) \((\dim \overline{m} = n)\) be another vector space, with basis \(\{\overline{\alpha}_0, \ldots, \overline{\alpha}_{n-1}\} \). Define \(\overline{p}_i, \overline{q}_i \) by analogy with (1). Let \(F = \bigcup_i [p_i, v]; F \subset \tilde{A}_n \) is an order filter. Within \(F, \bigcup_i [p_i, m] \) is an order ideal. Set up a "twisting" isomorphism

Received by the editors March 25, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 06C05.

©1987 American Mathematical Society 0273-0979/87 $1.00 + $.25 per page
τ of \(\bigcup_i [p_i, m] \) with the order filter \(\bigcup_i [\bar{p}_i, \bar{m}] \subset [0, \bar{m}] \) as follows: for each \(i \), the atoms of \([\bar{p}_i, \bar{m}] \) are of the form \(\langle r\bar{a}_i + s\bar{a}_{i+1}, \bar{a}_{i+2}, \ldots, \bar{a}_{i-1} \rangle \) where \((r : s) \) is a ratio of elements of \(K \). Put \(\tau(\bar{p}_i) = p_i \), \(\tau(\bar{m}) = m \), and \(\tau(\langle r\bar{a}_i + s\bar{a}_{i+1}, \bar{a}_{i+2}, \ldots, \bar{a}_{i-1} \rangle) = \langle r\alpha_i + s\alpha_{i+1}, \alpha_{i+2}, \ldots, \alpha_{i-1} \rangle \) except, when \(i = 0 \), put

\[
\tau(\langle r\bar{a}_0 + s\bar{a}_1, \bar{a}_2, \ldots, \bar{a}_{n-1} \rangle) = \langle -r\alpha_0 + s\alpha_1, \alpha_2, \ldots, \alpha_{n-1} \rangle.
\]

This definition is consistent on \(\bar{q}_i \) and makes \(\tau(\bar{q}_i) = q_i \).

Let

\[
A_n = F \cup [0, \bar{m}] / (x = \tau(x))_{x \in \bigcup_i [\bar{p}_i, \bar{m}]}.\]

\(A_n \) is a modular lattice and has the same block decomposition (2) as \(\tilde{A}_n \), hence the same skeleton lattice \(\tilde{S} \). Composing \(\tau \) with the automorphism of \([0, \bar{m}] \) induced by the linear transformation \(\alpha_1 \mapsto -\alpha_1, \ldots, \alpha_k \mapsto -\bar{\alpha}_k \), other \(\alpha_i \) fixed, shows that the exceptional interval \([\bar{p}_0, \bar{m}] \) in the definition of \(\tau \) could as well have been \([\bar{p}_k, \bar{m}] \), up to an isomorphism of \(A_n \) respecting the \(\bar{p}^j \).

3. Properties of \(A_n \).

Theorem. \(A_n \) is not a linear lattice.

Proof. In [3], the author introduced “higher Arguesian identities”

\[
D_n: \quad a_0 \land \left(a'_0 \lor \bigwedge_{i=1}^{n-1} [a_i \lor a'_i]\right) \leq a_1 \lor \left((a'_0 \lor a'_1) \land \bigvee_{i=1}^{n-1} [(a_i \lor a_{i+1}) \land (a'_i \lor a'_{i+1})]\right)
\]

which hold in all linear lattices. \(D_3 \) is the Arguesian law [4]. If we take \(a_i = p_i + (\beta_i) \) for all \(i \), \(a'_i = p_i + (\beta_i + \alpha_i + \alpha_{i+1}) \) for \(i \neq 0 \), and \(a'_0 = p_0 + (\beta_0 - \alpha_0 + \alpha_1) \), \(D_n \) fails in \(A_n \). In particular, \(A_3 \) is not Arguesian. This minimally non-Arguesian lattice was discovered by Pickering [8].

Theorem. Every proper sublattice of \(A_n \) is linear.

Proof. \(\bigcup_i [p_i, r_i] \) generates \(A_n \), so a proper sublattice \(N \subset A_n \) will have \(N \cap [p_i, r_i] \subset [p_i, r_i] \) strictly for some \(i \). We can assume \([p_i, m] \) is the exceptional interval in the definition of \(\tau \). We show \([p_i, r_i] \) (which is a projective plane over \(K \)) possesses an automorphism fixing \(N \cap [q_i, r_i] \) and \(N \cap [q_i+1, r_i] \) and acting as \(\tau \) on \(N \cap [p_i, m] \). This is proved by classifying maximal proper sublattices of \([p_i, r_i] \) and their possible orientations relative to \(m, q_i, q_i+1 \), which leads to 13 cases to check, some trivial, none difficult.

It follows that \(A_n \) has a sublattice isomorphic to \(N \), so \(N \) is linear.

Theorem. If \(X \subseteq A_n \) generates \(A_n \), then \(|X| \geq n \).

Proof. For each \(j \), \(0_S \cup 1_S \cup \bigcup_{i \neq j} a_i \cup \bigcup_{i \neq j} b_i \) is a sublattice of \(A_n \) because \(\{0_S, 1_S\} \cup \{a_j, b_i | i \neq j\} \) is a sublattice of \(S \). For each \(j \), therefore, some \(x_j \in X \) is an element of \(a_j \cup b_j \) and not an element of any other block. This requires \(n \) distinct elements of \(X \).
4. Conclusions. The results of §3 imply that no finite set of identities, or even universal Horn sentences, can completely characterize linearity; in particular, the Arguesian law is insufficient, since it holds in A_n for $n \geq 7$. It is known, however, how to characterize linear lattices by an infinite set of universal Horn sentences [3, 7].

If, as appears likely, the identity D_{n-1} holds in A_n ($n \geq 4$), we would have that D_{n-1} does not imply D_n, showing that $\{D_n\}$ forms a hierarchy of progressively strictly stronger linear lattice identities. We remark that generator-counting will not suffice for this, since A_n has a set of generators X with $|X| = n + 3$. We conjecture $n + 3$ is minimal, which would imply A_4 is Arguesian.

REFERENCES

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139