Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

 

Braids, hypergeometric functions, and lattices


Author: G. D. Mostow
Journal: Bull. Amer. Math. Soc. 16 (1987), 225-246
MSC (1985): Primary 06B30, 20F36, 33A30
MathSciNet review: 876959
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Hamburg Univ. 4 (1925), 42-72; Theory of braids, Ann. of Math. (2) 48 (1947), 101-126.
  • 2. Armand Borel, Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. (2) 72 (1960), 179–188. MR 0123639 (23 #A964)
  • 3. P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 5–89. MR 849651 (88a:22023a)
  • 4. L. Euler, Specimen transformationi singularis serierum, Sept. 3, 1778, Nova Acta Petropolitana, Bd XII (1801), 58-78.
  • 5. V. S. Makarov, On a certain class of discrete groups of Lobačevskiĭspace having an infinite fundamental region of finite measure, Dokl. Akad. Nauk SSSR 167 (1966), 30–33 (Russian). MR 0200348 (34 #244)
  • 6. G. A. Margulis, Discrete groups of motions of manifolds of non-positive curvature, Proc. Int. Congr. Math., Vancouver (1974).
  • 7. G. D. Mostow, Strong rigidity of locally symmetric spaces, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. Annals of Mathematics Studies, No. 78. MR 0385004 (52 #5874)
  • 8. G. D. Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980), no. 1, 171–276. MR 586876 (82a:22011)
  • 9. G. D. Mostow, Existence of nonarithmetic monodromy groups, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 10, Phys. Sci., 5948–5950. MR 773821 (86b:22020), http://dx.doi.org/10.1073/pnas.78.10.5948
  • 10. G. D. Mostow, Generalized Picard lattices arising from half-integral conditions, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 91–106. MR 849652 (88a:22023b)
    Frederick W. Gehring, Quasiconformal mappings, ICM Series, American Mathematical Society, Providence, RI, 1988. A plenary address presented at the International Congress of Mathematicians held in Berkeley, California, August 1986; Introduced by G. D. Mostow. MR 1055358 (91b:30062)
  • 12. David Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, Springer-Verlag, Berlin-New York, 1965. MR 0214602 (35 #5451)
  • 13. Émile Picard, Sur les fonctions hyperfuchsiennes provenant des séries hypergéométriques de deux variables, Ann. Sci. École Norm. Sup. (3) 2 (1885), 357–384 (French). MR 1508769
  • 14. L. Pochhammer, Über hypergeometrische Function hoheren Ordnung, J. für Math. 71 (1870), 316-362.
  • 15. B. Riemann, Abh. Kon. Ges. Wiss. Göttingen VII (1957).
  • 16. L. Schläfli, Über die Gaussiche hypergeometrische Reihe, Math. Ann. III (1871), 286-295.
  • 17. H. A. Schwarz, Über diejenige Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres viertes elementes darstellt, Crelle's J. 75 (1873), 292-335.
  • 18. È. B. Vinberg, Discrete groups generated by reflections in Lobačevskiĭ\ spaces, Mat. Sb. (N.S.) 72 (114) (1967), 471–488; correction, ibid. 73 (115) (1967), 303 (Russian). MR 0207853 (34 #7667)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 06B30, 20F36, 33A30

Retrieve articles in all journals with MSC (1985): 06B30, 20F36, 33A30


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1987-15510-8
PII: S 0273-0979(1987)15510-8