Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Braids, hypergeometric functions, and lattices


Author: G. D. Mostow
Journal: Bull. Amer. Math. Soc. 16 (1987), 225-246
MSC (1985): Primary 06B30, 20F36, 33A30
DOI: https://doi.org/10.1090/S0273-0979-1987-15510-8
MathSciNet review: 876959
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Hamburg Univ. 4 (1925), 42-72; Theory of braids, Ann. of Math. (2) 48 (1947), 101-126.
  • 2. Armand Borel, Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. (2) 72 (1960), 179–188. MR 0123639, https://doi.org/10.2307/1970150
  • 3. P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 5–89. MR 849651
    G. D. Mostow, Generalized Picard lattices arising from half-integral conditions, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 91–106. MR 849652
  • 4. L. Euler, Specimen transformationi singularis serierum, Sept. 3, 1778, Nova Acta Petropolitana, Bd XII (1801), 58-78.
  • 5. V. S. Makarov, On a certain class of discrete groups of Lobačevskiĭspace having an infinite fundamental region of finite measure, Dokl. Akad. Nauk SSSR 167 (1966), 30–33 (Russian). MR 0200348
  • 6. G. A. Margulis, Discrete groups of motions of manifolds of non-positive curvature, Proc. Int. Congr. Math., Vancouver (1974).
  • 7. G. D. Mostow, Strong rigidity of locally symmetric spaces, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. Annals of Mathematics Studies, No. 78. MR 0385004
  • 8. G. D. Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980), no. 1, 171–276. MR 586876
  • 9. G. D. Mostow, Existence of nonarithmetic monodromy groups, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 10, Phys. Sci., 5948–5950. MR 773821, https://doi.org/10.1073/pnas.78.10.5948
  • 10. P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 5–89. MR 849651
    G. D. Mostow, Generalized Picard lattices arising from half-integral conditions, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 91–106. MR 849652
    Frederick W. Gehring, Quasiconformal mappings, ICM Series, American Mathematical Society, Providence, RI, 1988. A plenary address presented at the International Congress of Mathematicians held in Berkeley, California, August 1986; Introduced by G. D. Mostow. MR 1055358
  • 12. David Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, Springer-Verlag, Berlin-New York, 1965. MR 0214602
  • 13. Émile Picard, Sur les fonctions hyperfuchsiennes provenant des séries hypergéométriques de deux variables, Ann. Sci. École Norm. Sup. (3) 2 (1885), 357–384 (French). MR 1508769
  • 14. L. Pochhammer, Über hypergeometrische Function hoheren Ordnung, J. für Math. 71 (1870), 316-362.
  • 15. B. Riemann, Abh. Kon. Ges. Wiss. Göttingen VII (1957).
  • 16. L. Schläfli, Über die Gaussiche hypergeometrische Reihe, Math. Ann. III (1871), 286-295.
  • 17. H. A. Schwarz, Über diejenige Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres viertes elementes darstellt, Crelle's J. 75 (1873), 292-335.
  • 18. È. B. Vinberg, Discrete groups generated by reflections in Lobačevskiĭ spaces, Mat. Sb. (N.S.) 72 (114) (1967), 471–488; correction, ibid. 73 (115) (1967), 303 (Russian). MR 0207853

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 06B30, 20F36, 33A30

Retrieve articles in all journals with MSC (1985): 06B30, 20F36, 33A30


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1987-15510-8