Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Braids, hypergeometric functions, and lattices


Author: G. D. Mostow
Journal: Bull. Amer. Math. Soc. 16 (1987), 225-246
MSC (1985): Primary 06B30, 20F36, 33A30
DOI: https://doi.org/10.1090/S0273-0979-1987-15510-8
MathSciNet review: 876959
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Hamburg Univ. 4 (1925), 42-72; Theory of braids, Ann. of Math. (2) 48 (1947), 101-126.
  • 2. A. Borel, Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. (2) 72 (1960), 179-188. MR 123639
  • 3. P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. n° 63 (1986). MR 849651
  • 4. L. Euler, Specimen transformationi singularis serierum, Sept. 3, 1778, Nova Acta Petropolitana, Bd XII (1801), 58-78.
  • 5. V. S. Makarov, On a class of discrete subgroups in Lobachevsky space having an unbounded fundamental domain of finite measure, Dokl. Akad. Nauk SSSR 167 (1966), 30-33. MR 200348
  • 6. G. A. Margulis, Discrete groups of motions of manifolds of non-positive curvature, Proc. Int. Congr. Math., Vancouver (1974).
  • 7. G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. Math. Studies, vol. 78, Princeton Univ. Press, Princeton, N. J., 1973. MR 385004
  • 8. G. D. Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980), 171-276. MR 586876
  • 9. G. D. Mostow, On the existence of non-arithmetic monodromy groups, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 5948-5950. MR 773821
  • 10. G. D. Mostow, Generalized Picard lattices arising from half-integral conditions, Inst. Hautes Études Sci. Publ. Math. n° 63 (1986). MR 849652
    11a. G. D. Mostow, Lattices in U(n, 1) (to appear). MR 1055358

    b. G. D. Mostow, On necessary conditions for hypergeometric monodromy groups to be discrete (to appear).

  • 12. D. Mumford, Geometric invariant theory, Springer MR 214602
  • 13. E. Picard, Sur les fonctions hyperfuchsiennes provenant des séries hypergéometrique de deux variables, Ann. ENS III 2 (1885), pp. 357-384. MR 1508769
  • 14. L. Pochhammer, Über hypergeometrische Function hoheren Ordnung, J. für Math. 71 (1870), 316-362.
  • 15. B. Riemann, Abh. Kon. Ges. Wiss. Göttingen VII (1957).
  • 16. L. Schläfli, Über die Gaussiche hypergeometrische Reihe, Math. Ann. III (1871), 286-295.
  • 17. H. A. Schwarz, Über diejenige Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres viertes elementes darstellt, Crelle's J. 75 (1873), 292-335.
  • 18. E. B. Vinberg, Discrete groups generated by reflections in Lobachevski spaces, Mat. Sb. (NS) 72 (114) (1967), 471-488. MR 207853

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 06B30, 20F36, 33A30

Retrieve articles in all journals with MSC (1985): 06B30, 20F36, 33A30


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1987-15510-8

American Mathematical Society