Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Morse theory for fixed points of symplectic diffeomorphisms


Author: Andreas Floer
Journal: Bull. Amer. Math. Soc. 16 (1987), 279-281
MSC (1985): Primary 53C15; Secondary 58F05
MathSciNet review: 876964
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. V. I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York-Heidelberg, 1978. Translated from the Russian by K. Vogtmann and A. Weinstein; Graduate Texts in Mathematics, 60. MR 0690288
  • 2. C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol′d, Invent. Math. 73 (1983), no. 1, 33–49. MR 707347, 10.1007/BF01393824
  • 3. Andreas Floer, Proof of the Arnol′d conjecture for surfaces and generalizations to certain Kähler manifolds, Duke Math. J. 53 (1986), no. 1, 1–32. MR 835793, 10.1215/S0012-7094-86-05301-9
  • 4. Barry Fortune, A symplectic fixed point theorem for 𝐶𝑃ⁿ, Invent. Math. 81 (1985), no. 1, 29–46. MR 796189, 10.1007/BF01388770
  • 5. M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307–347. MR 809718, 10.1007/BF01388806
  • 6. John Milnor, Lectures on the ℎ-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J., 1965. MR 0190942
  • 7. Jean-Claude Sikorav, Points fixes d’une application symplectique homologue à l’identité, J. Differential Geom. 22 (1985), no. 1, 49–79 (French). MR 826424
  • 8. A. Weinstein, C0 -perturbation theorems for symplectic fixed points and Lagrangian intersections, Lecture Notes, Amer. Math. Soc. Summer Institute on nonlinear functional analysis and applications, Berkeley, 1983.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 53C15, 58F05

Retrieve articles in all journals with MSC (1985): 53C15, 58F05


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1987-15517-0