SMOOTH NONTRIVIAL 4-DIMENSIONAL s-COBORDISMS

SYLVAIN E. CAPPELL AND JULIUS L. SHANESON

ABSTRACT. This announcement exhibits smooth 4-dimensional manifold triads $(W; M_0, M_1)$ which are s-cobordisms, i.e. the inclusions $M_i \subseteq W$, $i = 0, 1$, are simple homotopy equivalences, but are not diffeomorphic or even homeomorphic to a product $M_i \times [0,1]$.

The Barden-Mazur-Stallings s-cobordism theorem constitutes one of the foundational stones of modern topology. It asserts, in the smooth, piecewise-linear, or topological categories, that if W is a manifold of dimension at least six, with boundary components M_i, $i = 0, 1$, whose inclusions into W are simple homotopy equivalences, then W is necessarily a product (see [K, H, RS, KS]). For simply connected smooth manifolds of dimension at least six, this result had already been proven by Smale as the "h-cobordism theorem" [Sm], with the generalized Poincaré conjecture in higher dimensions as a corollary. The s-cobordism statement holds in dimensions one and two, and is equivalent to the Poincaré conjecture in dimension three. Freedman [F1, F2] proved the five-dimensional result for topological manifolds with fundamental group of polynomial growth (e.g. finite or polycyclic). Donaldson's extraordinary results imply the failure of the five-dimensional result in the smooth (or piecewise linear) category even for simply connected manifolds; by [F1] the resulting h-cobordisms will still be topological products. Using Freedman's results, the present authors produced some nontrivial orientable four-dimensional topological s-cobordisms [CS1, CS2]. (See [MS] for a nonorientable and definitely nonsmoothable example.) These topological constructions have been further studied and extended by Kwasik and Schultz [KwS].

We will now use a different construction to produce some nontrivial smooth s-cobordisms. Neither the construction nor the proof rely on any of the results cited above. Let M be a quaternionic space-form; i.e.

$$M = M_r = S^3/Q_r,$$

Q_r the quaternionic group of order 2^{r+2}. Then it is well known that the orientable manifold M has a one-sided Heegaard splitting

$$M = N(K) \cup H,$$

where $N(K)$ is the total space of an interval bundle over the Klein bottle K and H is a solid torus. Let E_0 be a closed tubular neighborhood of
\[K = K \times \{0\} \text{ in } M \times (-1,1). \] Then \(E_0 \) is a linear \(D^2 \)-bundle over \(K \) with boundary the double of \(N(K) \). Let

\[X = M \times [-1,1] - \text{Int } E_0. \]

The smooth \(s \)-cobordisms will be of the form

\[W = W_r = X \cup_{\partial E_0} E, \]

where \(E \) will be a locally trivial smooth fiber-bundle over \(K \) with fiber \(T^2_0 = S^1 \times S^1 - \text{Int } D^2 \), with \(\partial E = \partial E_0 \).

In fact, view \(S^1 \subset C \) and define \(\psi_i, i = 1,2 \), by

\[\psi_1(x,y) = (y,yx) \quad \text{and} \quad \psi_2(x,y) = (y^{-1},y^{-1}x^{-1}). \]

Note that \(\psi_1^2 = \psi_2^2 \). The Klein bottle \(K \) is the union of two Möbius bands, and it follows that there is a canonical \(T^2 \)-bundle \(E_1 \) over \(K \) whose restrictions to the cores of the Möbius bands have monodromies \(\psi_1 \) and \(\psi_2 \) respectively. Since \(\psi_1(1,1) = (1,1) \), this bundle has a cross-section, and there is a canonical way to identify a tubular neighborhood of its image with \(E_0 \). We then take \(E = E_1 - \text{Int } E_0 \) in the above definition of \(W \). Clearly, \(W \) is an orientable smooth 4-manifold with two copies of \(M = S^3/Q_r \) as boundary.

Theorem. 1. The smooth four-manifold \(W \) is an \(s \)-cobordism of \(M \) to itself.

2. \(W \) is not diffeomorphic or even homeomorphic to a product \(M \times [-1,1] \).

It can also be shown that \(W \) is not homeomorphic to any of the topological \(s \)-cobordisms of \([CS2]\), and the smoothability of any of them remains open.

The proof of 1 uses Van Kampen’s theorem and other well-known arguments in homotopy and simple homotopy theory. However, note that the restriction of a suitable diffeomorphism of \(T^2 \) isotopic to \(\psi_i \) represents a square-root of the monodromy of the figure-eight knot.

We indicate the proof of 2 for the case \(r = 1 \), the quaternion group of order eight. Let \(P \) be obtained from \(W \) by identifying \(M \times \{-1\} \) with \(M \times \{1\} \). Then we explicitly construct a framed 5-manifold \(U \) with the following properties:

1. \(\partial U = P \).
2. There is a retraction \(r: U \to M \) inducing isomorphisms on fundamental groups and homology with \(\mathbb{Z}_2 \) coefficients.
3. If \(U_4 \) and \(U_8 \) are the 4-fold and 8-fold covers of \(U \), respectively, then \(|H_2(U_8)||H_2(U_4)|^{-1} \equiv \pm 7 \) (mod 16).

By contrast, we show that were \(W \) a product and \(U \) as above satisfying 1 and 2, the quotient (of odd integers) in 3 would necessarily be congruent to \(\pm 1 \) (mod 16). Because of the possible choices for \(P \) and \(r \), the proof is somewhat involved. It uses the fact, due independently to J. H. Rubinstein \([R]\) and the present authors, that a diffeomorphism or homeomorphism of \(M \) homotopic to the identity will necessarily be isotopic to it. In the course of the proof, the remaining ambiguity of \([KwS]\) concerning the classification of topological \(s \)-cobordisms of \(M \) to itself is resolved, and a remark in \([CS2]\) is corrected.
It would be interesting to know if the universal covering space of W is diffeomorphic to $S^3 \times [0,1]$. This is similar to the situation for the exotic \mathbb{RP}^4 of $[CS3]$, whose covering space is also potentially exotic $[AK]$. It is also of interest to observe that for the case $r = 1$, W can be embedded as a codimension zero submanifold of a smooth homotopy 4-sphere.

REFERENCES

