Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF
Book Information:

Author: P. D. T. A. Elliott
Title: Arithmetic functions and integer products
Additional book information: Grundlehren der Mathematischen Wissenschaften, vol. 272, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1985, xv + 461 pp., $64.00. ISBN 0-387-96094-5.

Author: Paul J. McCarthy
Title: Introduction to arithmetical functions
Additional book information: Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1986, vi+365 pp., $35.50. ISBN 0-387-96262-X.

References [Enhancements On Off] (What's this?)

  • 1. T. M. Apostol, Modular functions and Dirichlet series in number theory, Graduate Texts in Math., No. 41, Springer-Verlag, 1976. MR 422157
  • 2. R. Ayoub, An introduction to the analytic theory of numbers, Amer. Math. Soc. Providence, R.I., 1963. MR 160743
  • 3. B. J. Birch, Multiplicative functions with non-decreasing normal order, J. London Math. Soc. 42 (1967), 149-151. MR 202675
  • 4. E. Bombieri, On the large sieve, Mathematika 12 (1965), 201-225. MR 197425
  • 5. J. -M. De Koninck and A. Mercier, Approche élémentaire de l'étude des fonctions arithmétiques, Presses Univ. Laval, Québec, 1982.
  • 6. H. Delange, Sur les fonctions arithmétiques multiplicatives, Ann. Sci. École Norm. Sup. 78 (1961), 273-304. MR 169829
  • 7. F. Dress and B. Volkmann, Ensembles d'unicité pour les fonctions arithmétiques additives ou multiplicatives, C. R. Acad. Sci. Paris Ser. A 287 (1978), 43-46. MR 491439
  • 8. P. D. T. A. Elliott, A conjecture of Kátai, Acta Arith. 26 (1974), 11-20. MR 354599
  • 9. P. D. T. A. Elliott, Probabilistic number theory. I, Springer-Verlag, Berlin and New York, 1979. MR 551361
  • 10. P. D. T. A. Elliott, Probabilistic number theory. II, Springer-Verlag, Berlin and New York, 1980. MR 560507
  • 11. P. D. T. A. Elliott, Functional analysis and additive arithmetic functions, Bull Amer. Math. Soc. (N.S.) 16 (1987), 179-223. MR 876958
  • 12. P. Erdős, On the distribution of additive functions, Ann. of Math. (2) 47 (1946), 1-20. MR 15424
  • 13. P. Erdős, On a new method in elementary number theory which leads to an elementary proof of the prime number theorem, Proc. Nat. Acad. Sci. (Washington) 35 (1949), 374-384. MR 29411
  • 14. P. Erdős and M. Kac, On the Gaussian law of errors in the theory of additive functions, Proc. Nat. Acad. U. S. A. 25 (1939), 206-207.
  • 15. P. Erdős and M. Kac, The Gaussian law of errors in the theory of additive number-theoretic functions, Amer. J. Math. 62 (1940), 738-742. MR 2374
  • 16. P. Erdős and L. Mirsky, The distribution of values of the divisor function d(n), Proc. London Math. Soc. 2 (1952), 257-271. MR 49932
  • 17. J. Galambos and I. Kátai, A new proof for the continuity of the limiting distribution of some arithmetical functions, Proc. Budapest Conference (to appear).
  • 18. J. Galambos and P. Szüsz, On the distribution of multiplicative arithmetical functions, Acta Arith. 47 (1986), 57-62. MR 866902
  • 19. E. Grosswald, Oscillation theorems of arithmetical functions, Trans. Amer. Math. Soc. 126 (1967), 1-28. MR 202685
  • 20. G. Halasz, Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta Math. Sci. Hungar. 19 (1968), 365-403. MR 230694
  • 21. H. Halberstam and H. E. Richert, Sieve methods, Academic Press, New York, 1974. MR 424730
  • 22. G. Hardy and J. E. Littlewood, Some problems of partitio numerorum. III: On the expression of a number as a sum of primes, Acta Math. 44 (1922), 1-70.
  • 23. G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Quart. J. Math. (Oxford) 48 (1917), 76-92.
  • 24. G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. 17 (1918), 75-115.
  • 25. D. R. Heath-Brown, The divisor function at consecutive integers, Mathematika 31 (1984), 141-149. MR 762186
  • 26. A. Hildebrand, An asymptotic formula for the variance of an additive function, Math. Z. 183 (1983), 145-149. MR 704101
  • 27. K. H. Indlekofer, On sets characterizing additive arithmetical functions, Math. Z. 146 (1976), 285-290. MR 389736
  • 28. A. Ivić, The Riemann zeta function, John Wiley & Sons, New York, 1985. MR 792089
  • 29. M. Kac, Statistical independence in probability, analysis and number theory, Carus Math. Monographs, No. 12, Math. Assoc. America (distributed by John Wiley and Sons, New York), 1959. MR 110114
  • 30. I. Kátai, On sets characterizing number-theoretical functions, Acta Arith. 13 (1968), 315-320. MR 220690
  • 31. I. Kátai, Some results and problems in the theory of additive functions, Acta Sci. Math. Szeged. 30 (1969), 305-311. MR 252339
  • 32. I. Kátai, On number-theoretical functions, Colloq. Math. Soc. János Bolyai, 2, North-Holland, Amsterdam, 1970, 133-136. MR 272732
  • 33. I. Kátai, On a problem of P. Erdős, J. Number Theory 2 (1970), 1-6. MR 250991
  • 34. H. von Koch, Sur la distribution des nombres premiers, Acta Math. 24 (1901), 159-182. MR 1554926
  • 35. G. Kolesnik, On the order of $\zeta ({1øver 2}+it)$ and $\Delta (R)$, Pacific J. Math. 98 (1982), 107-122. MR 644943
  • 36. J. Kubilius, Probabilistic methods in the theory of numbers, Trans. Math. Monographs, vol. 11, Amer. Math. Soc. Providence, R.I., 1968. MR 160745
  • 37. J. Lambek and L. Moser, On monotone multiplicative functions, Proc. Amer. Math. Soc. 4 (1953), 544-545. MR 56630
  • 38. J. L. Mauclaire, Sur la régularité des fonctions additives, Séminaire Delange-Pisot-Poitou, Théorie des Nombres, Paris 15 (1973/74), no. 23. MR 319872
  • 39. A. M. Odlyzko and H. J. J. te Riele, Disproof of the Mertens conjecture, J. Reine Angew Math. 357 (1985), 138-160. MR 783538
  • 40. B. Riemann, Über die Anzahl der Primzahlen unter eine gegebenen Grosse, Monatsh. Preuss. Akad. Wiss. (Berlin) (1859), 671-680.
  • 41. R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Comm. ACM 21 (1978), 120-126. MR 700103
  • 42. A. Selberg, An elementary proof of the prime number theorem, Ann. of Math. (2) 50 (1949), 305-313. MR 29410
  • 43. C. Spiro, Ph. D. Thesis, Univ. of Illinois, Urbana, Ill., 1981.
  • 44. E C. Titchmarsh, The theory of functions, Oxford University, 1952.
  • 45. P. Turán, On a theorem of Hardy and Ramanujan, J. London Math. Soc. 9 (1934), 274-276.
  • 46. P. Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Math., Springer-Verlag, 1987. MR 883451
  • 47. E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen. II, Acta Math. Akad. Sci. Hungar. 18 (1967), 411-467. MR 223318
  • 48. E. Wirsing, Characterization of the logarithm as an additive function, Proc. Sympos. Pure Math., vol 20, Amer. Math. Soc., Providence, R.I., 1971, pp. 375-381. MR 412129
  • 49. E. Wirsing, Additive functions with restricted growth on the numbers of the form p + 1, Acta Arith. 37 (1981), 345-357. MR 598887
  • 50. D. Wolke, Bemerkungen über Eindeutigkeitmengen additiver Funktionen, Elem. Math. 33 (1978), 14-16. MR 463096

Review Information:

Reviewer: Jean-Marie De Koninck
Journal: Bull. Amer. Math. Soc. 18 (1988), 230-247
DOI: https://doi.org/10.1090/S0273-0979-1988-15660-1