Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Constrained Poisson algebras and strong homotopy representations


Author: Jim Stasheff
Journal: Bull. Amer. Math. Soc. 19 (1988), 287-290
MSC (1985): Primary 18G10, 17B55, 81E13; Secondary 58H10, 70H99, 81C99
MathSciNet review: 940489
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 0. I. A. Batalin and E. S. Fradkin, A generalized canonical formalism and quantization of reducible gauge theories, Phys. Lett. 122B (1983), 157-164. MR 697056
  • 1. I. A. Batalin and G. S. Vilkovisky, Existence theorem for gauge algebra, J. Math. Phys. 26 (1985), 172-184. MR 776145
  • 2. I. A. Batalin and G. S. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D 28 (1983), 2567-2582. MR 726170
  • 3. I. A. Batalin and G. S. Vilkovisky, Relativistic S-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. 69B (1977), 309-312.
  • 4. A. D. Browning and D. McMullan, The Batalin, Fradkin, Vilkovisky formalism for higher order theories, J. Math. Phys. 28 (1987), 438-444. MR 872025
  • 5. C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124. MR 24908
  • 6. E. S. Fradkin and G. S. Vilkovisky, Quantization of relativistic systems with constraints, Phys. Lett. 55B (1975), 224-226. MR 411451
  • 7. V. K. A. M. Gugenheim, On a perturbation theory for the homology of a loop space, J. Pure Appl. Algebra 25 (1982), 197-205. MR 662761
  • 8. V. K. A. M. Gugenheim and J. P. May, On the theory and application of torsion products, Mem. Amer. Math. Soc. No. 142, Amer. Math. Soc. Providence, R. I., 1974. MR 394720
  • 9. V. K. A. M. Gugenheim and J. D. Stasheff, On perturbations and A, Bull. Soc. Math. Belg. 38 (1986), 237-245. MR 885535
  • 10. M. Henneaux, Hamiltonian form of the path integral for theories with a gauge freedom, Phys. Rep. 126 (1985), 1-66. MR 802754
  • 11. M. Henneaux and J. Stasheff, BRST formalism for reducible theories (preprint).
  • 12. G. Rinehart, Differential forms for general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195-222. MR 154906
  • 13. T. Jozefiak, Tate resolutions for commutative graded algebras over a local ring, Fund. Math. 74 (1972), 204-231. MR 301003
  • 14. J. Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14-27. MR 86072

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 18G10, 17B55, 81E13, 58H10, 70H99, 81C99

Retrieve articles in all journals with MSC (1985): 18G10, 17B55, 81E13, 58H10, 70H99, 81C99


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1988-15645-5