Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Countable tightness and proper forcing


Authors: Z. Balogh, A. Dow, D. H. Fremlin and P. J. Nyikos
Journal: Bull. Amer. Math. Soc. 19 (1988), 295-298
MSC (1980): Primary 54D30; Secondary 54A25, 54A35, 03E35, 03E50, 03E65
MathSciNet review: 940491
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. C. Moore and S. G. Mrówka, Topologies determined by countable objects, Notices Amer. Math. Soc. 11 (1964), 554.
  • 2. H. S. Bear and B. Yood, Multiplicative Junctionals on semigroups of continuous functions, Proc. Amer. Math. Soc. 10 (1959), 736-741. MR 108713
  • 3. A. V. Arhangel'skii, Structure and classification of topological spaces and cardinal invariants, Uspekhi Mat. Nauk. 33: 6 (1978), 29-84 = Russian Math. Surveys 33: 6 (1978), 33-96. MR 526012
  • 4. A. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. (2) 14 (1976), 505-516. MR 438292
  • 5. J. E. Baumgartner, Applications of the proper forcing axiom, Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 913-959. MR 776640
  • 6. S. Shelah, Proper forcing, Lecture Notes in Math., vol. 940, Springer-Verlag, Berlin and New York, 1982. MR 675955
  • 7. P. Nyikos and M. Ismail, On spaces in which countably compact subsets are closed, and hereditary properties, Topology Appl. 11 (1980), 281-292. MR 585273
  • 8. S. Todorcević, A note on the proper forcing axiom, Contemp. Math., vol. 31, Amer. Math. Soc. Providence, R. I., 1984, pp. 209-218. MR 763902
  • 9. Z. Balogh, Locally nice spaces under Martin's Axiom, Comment. Math. Univ. Carolinae 24 (1983), 63-87. MR 703926
  • 10. P. Nyikos, The theory of nonmetrizable manifolds, Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp. 633-684. MR 776633
  • 11. V. V. Fedorchuk, Fully closed mappings and a compatibility of some theorems of general topology with the axioms of set theory, Math. USSR-Sb. 99 (1976), 3-33. MR 410631

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 54D30, 54A25, 54A35, 03E35, 03E50, 03E65

Retrieve articles in all journals with MSC (1980): 54D30, 54A25, 54A35, 03E35, 03E50, 03E65


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1988-15649-2