Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Countable tightness and proper forcing


Authors: Z. Balogh, A. Dow, D. H. Fremlin and P. J. Nyikos
Journal: Bull. Amer. Math. Soc. 19 (1988), 295-298
MSC (1980): Primary 54D30; Secondary 54A25, 54A35, 03E35, 03E50, 03E65
DOI: https://doi.org/10.1090/S0273-0979-1988-15649-2
MathSciNet review: 940491
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. C. Moore and S. G. Mrówka, Topologies determined by countable objects, Notices Amer. Math. Soc. 11 (1964), 554.
  • 2. H. S. Bear and B. Yood, Multiplicative Junctionals on semigroups of continuous functions, Proc. Amer. Math. Soc. 10 (1959), 736-741. MR 108713
  • 3. A. V. Arhangel′skiĭ, The structure and classification of topological spaces and cardinal invariants, Uspekhi Mat. Nauk 33 (1978), no. 6(204), 29–84, 272 (Russian). MR 526012
  • 4. A. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. (2) 14 (1976), 505-516. MR 438292
  • 5. James E. Baumgartner, Applications of the proper forcing axiom, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 913–959. MR 776640
  • 6. Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
  • 7. Mohammad Ismail and Peter Nyikos, On spaces in which countably compact sets are closed, and hereditary properties, Topology Appl. 11 (1980), no. 3, 281–292. MR 585273, https://doi.org/10.1016/0166-8641(80)90027-9
  • 8. Stevo Todorčević, A note on the proper forcing axiom, Axiomatic set theory (Boulder, Colo., 1983) Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 209–218. MR 763902, https://doi.org/10.1090/conm/031/763902
  • 9. Zoltán T. Balogh, Locally nice spaces under Martin’s axiom, Comment. Math. Univ. Carolin. 24 (1983), no. 1, 63–87. MR 703926
  • 10. Peter Nyikos, The theory of nonmetrizable manifolds, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 633–684. MR 776633
  • 11. V. V. Fedorchuk, Fully closed mappings and a compatibility of some theorems of general topology with the axioms of set theory, Math. USSR-Sb. 99 (1976), 3-33. MR 410631

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1980): 54D30, 54A25, 54A35, 03E35, 03E50, 03E65

Retrieve articles in all journals with MSC (1980): 54D30, 54A25, 54A35, 03E35, 03E50, 03E65


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1988-15649-2

American Mathematical Society