STRUCTURE THEORY AND REFLEXIVITY OF CONTRACTION OPERATORS

B. CHEVREAU, G. EXNER, AND C. PEARCY

1. Introduction. Let \(\mathcal{H} \) be a separable, infinite-dimensional, complex Hilbert space, and let \(\mathcal{L}(\mathcal{H}) \) denote the algebra of all bounded linear operators on \(\mathcal{H} \). The purpose of this note is to announce several new, and rather general, sufficient conditions that a contraction \(T \) in \(\mathcal{L}(\mathcal{H}) \) be reflexive, and, at the same time, to give various characterizations of the class of those contractions that possess an analytic invariant subspace (definition given below). Complete proofs and other results will appear in [7]. The principal new idea involved is a considerable improvement of the main construction of §3 of [9]. The new reflexivity theorems also depend on techniques from [9, 3, 1, and 4], and yield, in particular, the following improvement of the main result of [4].

Theorem 1.1. If \(T \) is a contraction in \(\mathcal{L}(\mathcal{H}) \) such that the spectrum \(\sigma(T) \) of \(T \) contains the unit circle \(\mathbb{T} \), then either \(T \) is reflexive or \(T \) has a nontrivial hyperinvariant subspace.

If \(T \in \mathcal{L}(\mathcal{H}) \) we denote by \(\mathcal{A}_T \) the dual algebra generated by \(T \) (i.e., \(\mathcal{A}_T \) is the smallest unital subalgebra of \(\mathcal{L}(\mathcal{H}) \) containing \(T \) that is closed in the weak* topology). It follows that \(\mathcal{A}_T \) is the dual space of \(Q_T = \mathcal{C}_1(\mathcal{H})/\perp \mathcal{A}_T \), where \(\perp \mathcal{A}_T \) is the preannihilator of \(\mathcal{A}_T \) in \(\mathcal{C}_1(\mathcal{H}) \), under the pairing

\[
(A, [L]) = \text{tr}(AL), \quad A \in \mathcal{A}_T, \; L \in \mathcal{C}_1(\mathcal{H}),
\]

where \([L] \) denotes the element of the quotient space \(Q_T \) containing the trace-class operator \(L \). Thus, if \(x \) and \(y \) are vectors in \(\mathcal{H} \), then \([x \otimes y] \) denotes the element of \(Q_T \) containing the rank-one operator \(x \otimes y \). The dual algebra \(\mathcal{A}_T \) is said to have property \((A_{1,\infty})\) if for any sequence \(\{[L_j]\}_{j=1}^{\infty} \) of elements from \(Q_T \) there exist vectors \(x \) and \(\{y_j\}_{j=1}^{\infty} \) in \(\mathcal{H} \) satisfying

\[
[L_j] = [x \otimes y_j], \quad j = 1, 2, \ldots.
\]

If, moreover, there exists \(\rho \geq 1 \) (independent of the family \(\{L_j\} \)) with the property that for every \(s > \rho \), the vectors \(\{x\} \) and \(\{y_j\} \) satisfying (1) can also be chosen to satisfy

\[
\|x\| \leq \left(s \sum_{k=1}^{\infty} \|L_k\| \right)^{1/2}, \quad \|y_j\| \leq (s\|L_j\|)^{1/2}, \quad j = 1, 2, \ldots,
\]

then we say that \(\mathcal{A}_T \) has property \((A_{1,\infty}(\rho))\).
Recall that if T is an absolutely continuous contraction in $\mathcal{L}(H)$, and $H^\infty(T)$ is the usual Hardy algebra of functions on T, then the Sz.-Nagy-Foias functional calculus $\Phi_T: H^\infty(T) \to \mathcal{H}_T$ is a weak* continuous algebra homomorphism with range weak* dense in \mathcal{H}_T. The class $A = A(\mathcal{H})$ is defined to be the set of all those absolutely continuous contractions T in $\mathcal{L}(H)$ for which Φ_T is an isometry; in other words, the set of such T for which $\|f(T)\| = \|f\|_\infty$ for every f in $H^\infty(T)$. Various sufficient conditions for an absolutely continuous contraction T to belong to A are known [2]. One such is that $\sigma(T) \cap D$ is dominating for T, where D is the open unit disc in C. The class A_{1,N_0} [resp. $A_{1,N_0}(\rho)$] is defined to consist of those T in $A(\mathcal{H})$ for which \mathcal{H}_T has property (A_{1,N_0}) [resp. $(A_{1,N_0}(\rho))$].

2. Analytic invariant subspaces. It turns out that another concept plays a central role in the derivation of our results—namely, the notion of an analytic invariant subspace (cf. [10, 3]). If T is a contraction in $\mathcal{L}(H)$, $\mathcal{M} \in \text{Lat}(T)$, and there exists a nonzero conjugate analytic function $\epsilon: \lambda \to \epsilon_\lambda$ from D into C, then \mathcal{M} is said to be an analytic invariant subspace for T. If, in addition, $\forall \lambda \in D \epsilon_\lambda = \mathcal{M}$, then \mathcal{M} is said to be a full analytic invariant subspace for T.

If $T \in \mathcal{L}(H)$, we write $\sigma_p(T)$, $\sigma_r(T)$, and $\sigma_0(T)$ for the point spectrum, right spectrum and essential (Calkin) spectrum of T respectively. Moreover, following [8], we write $\mathcal{F}_p(T)$ for the set of all λ in C for which $T - \lambda$ is a Fredholm operator with (strictly) positive index. Recall also that a subspace \mathcal{H} of \mathcal{H} is said to be semi-invariant for T if $\mathcal{H} = \mathcal{M} \ominus \mathcal{N}$, where $\mathcal{M}, \mathcal{N} \in \text{Lat}(T)$ and $\mathcal{M} \supset \mathcal{N}$; we denote the set of all semi-invariant subspaces for T by $\mathcal{F}(T)$. (Of course, \mathcal{H} itself and all elements of $\text{Lat}(T)$ belong to $\mathcal{F}(T)$.) As usual, if $\mathcal{H} \in \mathcal{F}(T)$, we write $T_\mathcal{H}$ for the compression of T to \mathcal{H}.

Theorem 2.1. If T is an absolutely continuous contraction in $\mathcal{L}(H)$, the following statements are equivalent:

(a) T has an analytic invariant subspace.

(b) T has a full analytic invariant subspace.

(c) $T \in A_{1,N_0}$.

(d) $T \in A_{1,N_0}(\rho)$ for some $\rho \geq 1$.

(e) There exists $\mathcal{H} \in \mathcal{F}(T)$ such that $\sigma_p(T_\mathcal{H}) = D$.

(f) There exists $\mathcal{H} \in \mathcal{F}(T)$ such that $T_\mathcal{H}$ is a Fredholm operator with (strictly) positive index.

Once and for all, we denote the set of all semi-invariant subspaces for T by $\mathcal{S}_T(T)$.

The deeper ones depend on additional, more technical, characterizations of the class A_{1,N_0} in terms of certain properties $E_{\theta,\gamma}$ and $F_{\theta,\gamma}$ which appear in [9 and 7], as well as on techniques and results from [8, 4 and 5].
3. Results on reflexivity. Recall that an operator T in $\mathcal{L}(\mathcal{H})$ is said to be reflexive if every operator S in $\mathcal{L}(\mathcal{H})$ such that $\text{Lat}(S) \supset \text{Lat}(T)$ belongs to \mathcal{H}_T, the closure of \mathcal{H}_T in the weak operator topology. If T is a contraction, we denote by T_a the direct summand of T that is the absolutely continuous part of T (i.e., T_a is the direct sum of the completely nonunitary part of T and the absolutely continuous part of the unitary part of T).

Theorem 3.1. Each of the following is a sufficient condition that an arbitrary contraction T in $\mathcal{L}(\mathcal{H})$ be reflexive:

(A) T (or T^*) satisfies any one of the conditions (a)–(f) of Theorem 2.1.
(B) T_a (or T_a^*) satisfies (c) or (d) of Theorem 2.1.
(C) $T_a \in (C_0, \cup C_0) \cap A$.
(D) $T_a \in (C_1, \cup C_1) \cap A$.
(E) T is hyponormal and $T_a \in A$.

Theorem 1.1 follows from Theorem 3.1(C) via the fact that any contraction T with $\sigma(T) \supset T$ not in the class $(C_0, \cup C_0) \cap A$ has nontrivial hyperinvariant subspaces (cf. [2, Theorem 4.3]), and on the basis of Theorem 3.1 we make the following conjectures.

Conjecture 3.2 [6]. Every T in A is reflexive.

Conjecture 3.3. Every hyponormal operator is reflexive.

References

U. E. R. de Mathématiques, Université de Bordeaux I, 33405 Talence, France

Department of Mathematics, Oberlin College, Oberlin, Ohio 44070

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109