EXAMPLES OF COMPLETE MANIFOLDS OF POSITIVE RICCI CURVATURE WITH NILPOTENT ISOMETRY GROUPS

GUOFANG WEI

It is well known [4] that the isometry group of a complete riemannian manifold M with strictly positive sectional curvature is always compact. This is no longer true in general when M has Ricci curvature $\text{Ric} > 0$. The first example was given in [7] for $\dim M = 4$. In this note we shall prove

Theorem. Let L be an n-dimensional simply connected nilpotent Lie group. Then for all sufficiently large p, the product manifold $M^{p+n} = \mathbb{R}^p \times L$ admits complete riemannian metrics with strictly positive Ricci curvature such that the isometry group of M contains L.

Using a theorem of Malcev [8], we have as an immediate consequence:

Corollary. Every finitely generated torsion-free nilpotent group can be realized as the fundamental group of a complete riemannian manifold with strictly positive Ricci curvature.

On the other hand, every finitely generated subgroup of the fundamental group of any complete manifold with $\text{Ric} \geq 0$ ($K \geq 0$) is nilpotent (abelian) up to finite index [6, 5, 4].

Proof of the Theorem. Our construction is inspired by [2]. We first apply an observation in [3, pp. 126–127] to obtain a family of almost flat metrics g_r on L, $0 < r < \infty$.

Choose a triangular basis $\{X_1, \ldots, X_n\}$ for the Lie algebra l of L, i.e., $[X_i, X_i] \in l_{i-1}$ whenever $X \in l_i$, and l_{i-1} is spanned by X_1, \ldots, X_{i-1}. For $X = \sum_{i=1}^{n} a_i X_i$ set $\|X\|^2 = \sum_{i=1}^{n} h_i^2(r) a_i^2$, where $h_i(r) = (1 + r^2)^{1/4}$, and $\alpha_n = \alpha > 0$, $2\alpha_i - 4\alpha_{i+1} = 1$, $1 \leq i \leq n - 1$. The above norm gives rise to a corresponding almost flat left invariant metric g_r. Then

$$|\text{Ric}_L(X_i)| \leq c(1 + r^2)^{-1},$$

where c is a constant depending on n and the structure constants.

Now we define a warped product metric g on M by

$$g = dr^2 + f^2(r) ds^2 + g_r,$$

where ds^2 is the canonical euclidean metric on the sphere $S^{p-1} \subset \mathbb{R}^p$, $f(r) = r(1 + r^2)^{-1/4}$. g is a complete metric on M, since $f(0) = 0$, $f'(0) = 1$, $f''(0) = 0$, $f(r) > 0$ for $r > 0$, $h_i(r) > 0$ for $r \geq 0$, $h'_i(0) = 0$ for $1 \leq i \leq n$.

Received by the editors December 11, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 53C20; Secondary 57S20.

©1988 American Mathematical Society

0273-0979/88 $1.00 + .25 per page
It is clear that the isometry group of \(g \) contains \(L \).

Let \(H = \partial/\partial r \) and \(U = f(r)^{-1}v \) for a unit tangent vector \(v \) of \(S^{p-1} \).

Straightforward calculation yields:

\[
\text{Ric}(H, U) = 0,
\]

\[
\text{Ric}(X_i, H) = \text{Ric}(X_i, U) = 0, \quad (1 \leq i \leq n),
\]

\[
\text{Ric}(X_i, X_j) = 0, \quad (i \neq j, 1 \leq i, j \leq n).
\]

\[
\text{Ric}(X_i, X_i) = -\frac{g''_i}{g_i} - (p - 1)\frac{f'g'_i}{fg_i} + \text{Ric}_L(X_i) - \sum_{i \neq j} \frac{g'_i g'_j}{g_i g_j}
\]

\[
\geq \left\{ -2\alpha_i[(2\alpha_i + 1)r^2 - 1] + (p - 1)\alpha_i(2 + r^2)
\right.
\]

\[
- c(1 + r^2) - \sum_{i \neq j} 4\alpha_i \alpha_j r^2 \right\}/(1 + r^2)^2
\]

\[
(1 \leq i \leq n).
\]

\[
\text{Ric}(H, H) = -\sum_{i=1}^{n} \frac{g''_i}{g_i} - (p - 1)\frac{f''}{f}
\]

\[
= \left\{ -\sum_{i=1}^{n} 2\alpha_i[(2\alpha_i + 1)r^2 - 1] + (p - 1)\frac{r^2 + 6}{4} \right\}/(1 + r^2)^2.
\]

\[
\text{Ric}(U, U) = -\frac{f''}{f} + \frac{p - 2}{f^2} - (p - 2) \left(\frac{f'}{f} \right)^2 - \sum_{i=1}^{n} \frac{f'g'_i}{fg_i}.
\]

Since \(1 - (f')^2 \geq 0, f'' \leq 0 \), we have \(\text{Ric}(U, U) > 0 \) in (4). Positivity of the Ricci curvature in the equations (2) and (3) follows for \(p \) sufficiently large. Observe that every term of the right-hand side decays at a rate of order at least \(r^{-2} \). This completes the proof of the theorem.

REMARK. The smallest \(p \) that yields positive Ricci curvature on \(M^{p+n} = \mathbb{R}^p \times L \) by means of our construction is quite large in general. For example, in the case of the three-dimensional Heisenberg group \(L = H^3 \), we have to choose \(p > 673 \). (With a slightly refined choice of functions, \(p > 26 \) will already work.) We don't know whether or not \(p \) can be chosen much smaller. However, it follows from [1] that necessarily \(p \geq 4 \) when \(L = H^3 \).

ACKNOWLEDGMENT. I would like to thank Detlef Gromoll and Michael Anderson for very helpful discussions.

REFERENCES

