Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF

Book Information

Author: R.-P. Holzapfel
Title: Geometry and arithmetic around Euler partial differential equations
Additional book information D. Reidel Publishing Company, Dordrecht, Boston and Lancaster, 1986, 184 pp., $34.50. ISBN 90-277-1827-X.


References [Enhancements On Off] (What's this?)

  • 1. Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725 (80b:14001)
  • 2. Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157 (57 #3116)
  • 3. Nicholas M. Katz, Algebraic solutions of differential equations (𝑝-curvature and the Hodge filtration), Invent. Math. 18 (1972), 1–118. MR 0337959 (49 #2728)
  • 4. P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 5–89. MR 849651 (88a:22023a)
  • 5. E. Picard, Sur les fonctions hyperfuchsiaes provenant des séries hypergéométriques de deux variables, Ann. École Norm. Sup. 52 (1885), 357-384.
  • 6. I. R. Shafarevich (ed.), Algebraic geometry. IV, Encyclopaedia of Mathematical Sciences, vol. 55, Springer-Verlag, Berlin, 1994. Linear algebraic groups. Invariant theory; A translation of Algebraic geometry. 4 (Russian), Akad.\ Nauk SSSR Vsesoyuz.\ Inst.\ Nauchn.\ i Tekhn.\ Inform., Moscow, 1989 [ MR1100483 (91k:14001)]; Translation edited by A. N. Parshin and I. R. Shafarevich. MR 1309681 (95g:14002)


Review Information

Reviewer: Peter Stiller
Journal: Bull. Amer. Math. Soc. 19 (1988), 356-358
DOI: http://dx.doi.org/10.1090/S0273-0979-1988-15674-1
PII: S 0273-0979(1988)15674-1