Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Topological types and multiplicities of isolated quasi-homogeneous surface singularities


Author: Stephen S.-T. Yau
Journal: Bull. Amer. Math. Soc. 19 (1988), 447-454
MSC (1985): Primary 32B99; Secondary 32C40
DOI: https://doi.org/10.1090/S0273-0979-1988-15695-9
MathSciNet review: 935021
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 0. V. I. Arnold, Normal forms of functions in neighborhood of degenerate critical points, Russian Math. Surveys 29 (1975), 10-150. MR 516034
  • 1. N. A'Campo, La fonction zeta d'une monodromie, Comment. Math. Helv. 50 (1975), 233-248. MR 371889
  • 2. K. Brauner, Zur Geometrie der Funktionen Zweier komplexen Veränderlicken, Abh. Math. Sem. Hamburg 6 (1928), 1-54.
  • 3. W. Burau, Kennzeichnung der Schlauchknoten, Abh. Math. Sem. Hamburg 9 (1932), 125-133.
  • 4. G. M. Greuel, Constant Milnor number implies constant multiplicity for quasi-homogeneous singularities, Manuscripta Math. 56 (1986), 159-166. MR 850367
  • 5. H. Laufer, Tangent cones for deformations of two-dimensional quasi-homogeneous singularities (preprint). MR 1000602
  • 6. Lê Dung Trâng, Topologie des singularités des hypersurfaces complexes, Astérisque 7, 8 (1973), 171-182. MR 361147
  • 7. Lê Dung Trâng, Three lectures on local monodromy, Lecture Notes Series No. 43, Matematisk Institut, Aarhus Universitet, Aarhus, 1974. MR 372242
  • 8. Lê Dûng Trâng and B. Teissier, Report on the problem session, Proc. Sympos. Pure Math., vol. 40, part 2, Amer. Math. Soc. Providence, R. I., 1983, pp. 103-116. MR 713239
  • 9. M. Lejeune, Sur l'equivalence des singularités des courbes algebroides planes, Coefficients de Newton, Centre de Math, de l'École Polytechnique, 1969.
  • 10. J. Milnor, Singular points of complex hypersurfaces, Ann. Math. Studies, no. 61, Princeton Univ. Press, Princeton, N. J., 1968. MR 239612
  • 11. J. Milnor and P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970), 385-393. MR 293680
  • 12. W. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), 299-344. MR 632532
  • 13. P. Orlik and P. Wagreich, Isolated singularities of algebraic surfaces with C* -action, Ann. of Math. (2) 93 (1971), 205-228. MR 284435
  • 14. D. O'Shea, Topologically trivial deformations of isolated quasi-homogeneous hypersurface singularities are equimultiple, Proc. Amer. Math. Soc. 101 (1987), 260-262. MR 902538
  • 15. B. Pérron, Conjugaison topologique des germes de fonctions holomorphe à singularité isolée en dimension trois, Invent. Math. 82 (1985), 27-35. MR 808107
  • 16. J. Reeve, A summary of results in the topological classification of plane algebroid singularities, Rend. Sem. Mat. Torino 14 (1954/1955), 159-187. MR 96663
  • 17. A. N. Varchenko, Zeta-function of monodromy and Newton's diagram, Invent. Math. 37 (1976), 253-262. MR 424806
  • 18. E. Yoshinaga, Topological types of isolated singularities defined by weighted homogeneous polynomials, J. Math. Soc. Japan 35 (1983), 431-436. MR 702767
  • 19. O. Zariski, On the topology of algebroid singularities, Amer. J. Math. 54 (1932), 433-465. MR 1507926
  • 20. O. Zariski, Some open questions in the theory of singularities, Bull. Amer. Math. Soc. 77 (1971), 481-491. MR 277533
  • 21. O. Zariski, General theory of saturation and saturated local rings. II, Amer. J. Math. 93 (1971), 872-964. MR 299607

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 32B99, 32C40

Retrieve articles in all journals with MSC (1985): 32B99, 32C40


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1988-15695-9

American Mathematical Society