SINGULAR SOBOLEV CONNECTIONS WITH HOLOMONY

L. M. SIBNER AND R. J. SIBNER

We consider local Sobolev connections on $SU(2)$ bundles over the complement, in R^4, of a smoothly embedded compact 2-manifold. Finite action implies that a holonomy condition is satisfied and we obtain an a priori estimate for the connection 1-form in terms of curvature and the flat connection carrying the holonomy. The a priori estimate classifies the possible singularities in these connections by the set of flat connections. In a certain case, this leads to smoothness and extendability results.

Let N be a full 4-dimensional neighborhood of the singular set S. The objects of study are connections $D = d + A$ defined on $SU(2)$ bundles over $X = N\backslash S$. We assume that $A \in H^2_{1,\text{loc}}(X)$ and that the action is finite, i.e., the curvature $F = dA + A \wedge A$ is in $L^2(N)$.

The following holonomy condition was first stated by Cliff Taubes. Choose coordinates (r, θ, u, v) with (u, v) coordinates on S and (r, θ) coordinates in a plane normal to S. Fixing u and v, and denoting by A_θ the θ component of A, the initial value problem for an $SU(2)$ valued function,

$$\frac{dg_r}{d\theta} + A_\theta g_r = 0, \quad g_r(0) = I,$$

has a unique solution $g_r(\theta)$, with $g_r(2\pi) = J_r \in SU(2)$. The holonomy condition we require is

(H) \quad \lim_{r \to 0} J_r = J^b \text{ exists.}

This condition is gauge invariant up to conjugacy in $SU(2)$. Our results can be formulated in two theorems.

Theorem 1. If A and F are smooth on $N\backslash S$ and $F \in L^2(N)$, then (H) is satisfied for almost all u and v. Up to conjugacy, the limit is independent of u and $v.

Next, assume (H) holds. Locally, the conjugacy class $[J^b]$ defines a flat connection $A^b = C d\theta$ with C a constant element of $su(2)$ determined up to a similarity transformation. Our second result uses holonomy to obtain an a priori estimate. We denote by X_0 and N_0 the intersections of X and N with a small open set in R^4 having nonvoid intersection with S.

Received by the editors February 23, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 35J60, 53C80.

Research of the first author partially supported by NSF grant DMS-8501419.

Research of the second author partially supported by NSF grant INT-8411481.

©1988 American Mathematical Society

0273-0979/88 $1.00 + .25$ per page

471
THEOREM 2. Suppose \(\hat{D} = d + \hat{A} \) satisfies (H) with \(\hat{A} \in H^2_{1, \text{loc}}(X_0) \) and \(\|F\|_{L^2(N_0)} \) sufficiently small. Then there is a flat connection \(A^b \) determined by \([J^b]\), and a universal constant \(K \), such that \(\hat{D} \) is gauge equivalent to \(D = d + A \), with \(d^* A = 0 \) and

\[
\|A - A^b\|_{H^2(N_0)} \leq K\|F\|_{L^2(N_0)}.
\]

Note that if \([J^b] = I\), then \(A \) is gauge equivalent to the zero connection form. In this case, \(D \) extends as an \(H^2 \) connection to all of \(N_0 \). If, in addition, field equations are satisfied, more smoothness follows from elliptic theory.

Theorem 1 is proved by making a good choice of gauge in which the Fourier coefficients of \(A_\theta \) can be estimated in terms of \(F \). These estimates can be used to show that \(A_\theta d\theta \) converges to a flat connection as \(r \) tends to zero. This flat connection carries the holonomy. To show that the limit is independent of \(u \) and \(v \) requires another good choice of gauge and Stokes' theorem.

To prove Theorem 2, we carry out a plan of attack suggested by Cliff Taubes. This involves an open-closed argument similar to that used in [U₁, Theorem 1.3]. The large space consists of the appropriate Sobolev space of connections satisfying the same holonomy condition. This space is shown to be connected. The subspace consists of connections which admit a Hodge gauge satisfying certain boundary and limiting conditions which imply the a priori estimate. (Detailed proofs will appear in a forthcoming article.)

Theorem 1 settles a conjecture of Atiyah's. Both theorems are related to recent work on the moduli space of magnetic monopoles over hyperbolic 3-space \([A, B, C, F]\) and to Yang-Mills fields over \(S^4 \) whose topological charge is not integral \([FH_1, FH_2]\).

ACKNOWLEDGEMENTS. We are greatly indebted to Cliff Taubes and Ed Miller for their invaluable assistance and encouragement.

REFERENCES

DEPARTMENT OF MATHEMATICS, POLYTECHNIC UNIVERSITY OF NEW YORK, BROOKLYN, NEW YORK 11201

DEPARTMENT OF MATHEMATICS, BROOKLYN COLLEGE (CUNY), BROOKLYN, NEW YORK 11210