Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Robert J. Daverman
Title: Decompositions of manifolds
Additional book information: Academic Press, Orlando, 1986, xi+317 pp., $55.00. ISBN 0-12-204220-4.

References [Enhancements On Off] (What's this?)

  • 1. R. H. Bing, A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Ann. of Math. (2) 56 (1952), 354-362. MR 49549
  • 2. R. H. Bing, Inequivalent families of periodic homeomorphisms of E, Ann. of Math. (2) 80 (1964), 78-93. MR 163308
  • 3. R. H. Bing, The Cartesian product of a certain nonmanifold and a line is E, Ann. of Math. (2) 70 (1959), 399-412. MR 107228
  • 4. M. Brown, A proof of the generalized Schönflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76. MR 117695
  • 5. J. W. Cannon, Σ, Rocky Mountain J. Math. 8 (1978), 527-532. MR 478166
  • 6. R. D. Edwards, Suspensions of homology spheres (unpublished manuscript).
  • 7. Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), no. 3, 357–453. MR 679066
  • 8. C. H. Giffen, Disciplining dunce hats in 4-manifolds (unpublished manuscript).
  • 9. R. L. Moore, Concerning upper semi-continuous collections of continua which do not separate a given continuum, Proc. Nat. Acad. Sci. 10 (1924), 356-360.
  • 10. R. L. Moore, Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. 27 (1925), no. 4, 416–428. MR 1501320, https://doi.org/10.1090/S0002-9947-1925-1501320-8
  • 11. Frank Quinn, Resolutions of homology manifolds, and the topological characterization of manifolds, Invent. Math. 72 (1983), no. 2, 267–284. MR 700771, https://doi.org/10.1007/BF01389323
  • 12. G. T. Whyburn, On the structure of continua, Bull. Amer. Math. Soc. 42 (1936), 49-73.

Review Information:

Reviewer: Steve Armentrout
Journal: Bull. Amer. Math. Soc. 19 (1988), 562-565
DOI: https://doi.org/10.1090/S0273-0979-1988-15743-6
American Mathematical Society