Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)



On singular Hamiltonians: the existence of quasi-periodic solutions and nonlinear stability

Author: Chjan C. Lim
Journal: Bull. Amer. Math. Soc. 20 (1989), 35-40
MSC (1985): Primary 34C28, 34D99, 70H05; Secondary 76C05, 70F10
MathSciNet review: 955317
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [Al] V. I. Arnold, Math, methods of classical mechanics, Springer-Verlag, Berlin and New York, 1980.
  • [A2] V. I. Arnold, Russian Math. Surveys 18(5) (1963), 9.
  • [C] C. Conley, Comm. Pure Appl. Math. 16 (1963), 449-467. MR 154724
  • Chjan C. Lim, Singular manifolds and quasi-periodic solutions of Hamiltonians for vortex lattices, Phys. D 30 (1988), no. 3, 343–362. MR 947905,
  • [L2] Chjan C. Lim, Symplectic techniques for vortex N-body problems, Comm. Math. Phys. (submitted).
  • Chjan C. Lim, Quasi-periodic dynamics of desingularized vortex models, Phys. D 37 (1989), no. 1-3, 497–507. Advances in fluid turbulence (Los Alamos, NM, 1988). MR 1024401,
  • Chjan C. Lim, On Hamiltonian singularities and applications, Differential equations and applications, Vol. I, II (Columbus, OH, 1988) Ohio Univ. Press, Athens, OH, 1989, pp. 140–145. MR 1026211
  • [M1] J. Moser, Stable and random motions in dynamical systems, Princeton Univ. Press, Princeton, N.J., 1973. MR 442980
  • [M2] J. Moser, Nachr. Akad. Wiss. Gott. Math. Phys. Kl. 2 (1982), 1.
  • [M3] J. Moser, Comm. Pure Appl. Math. 23 (1970), 609-636. MR 269931
  • [MO] G. Joyce and D. Montgomery, J. Plasma Phys. 10 (1973), 107.
  • K. R. Meyer and D. S. Schmidt, The stability of the Lagrange triangular point and a theorem of Arnol′d, J. Differential Equations 62 (1986), no. 2, 222–236. MR 833418,
  • Jerrold Marsden and Alan Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Phys. D 7 (1983), no. 1-3, 305–323. Order in chaos (Los Alamos, N.M., 1982). MR 719058,
  • S. L. Ziglin, Nonintegrability of the problem of the motion of four point vortices, Dokl. Akad. Nauk SSSR 250 (1980), no. 6, 1296–1300 (Russian). MR 564329

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 34C28, 34D99, 70H05, 76C05, 70F10

Retrieve articles in all journals with MSC (1985): 34C28, 34D99, 70H05, 76C05, 70F10

Additional Information


American Mathematical Society