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In set theory truth is approached from four directions, not just the 
usual two. A given proposition may be true or false, but it may also 
be consistent with or independent of "the usual axioms for set theory", 
that is to say the Zermelo-Fraenkel system of axioms together with the 
Axiom of Choice, the whole denoted by ZFC. Moreover, these independent 
propositions take up part of the life of every set theorist. They are not 
the sort of propositions that only a logician could love; frequently they are 
powerful, fundamental assertions that occur naturally, and they require 
study. To follow this Fourfold Way of Truth one must master, in addition 
to proof and refutation, the method of forcing. 

Forcing, of course, was invented 25 years ago by Paul Cohen as the 
key element in his proof that the Continuum Hypothesis is independent 
of ZFC. It can best be regarded as a way of adjoining to the universe 
of set theory new sets with special properties. For example, to make the 
Continuum Hypothesis false one might adjoin N2 new real numbers. Now 
from the point of view of the universe V of set theory any new sets have 
got to be fictitious, since V is nothing else than the collection of all (well-
founded) sets, so there is a flavor of sand-castle-building to the whole 
enterprise of forcing. One way of dealing with this is to treat the extension 
of the universe as a collection of artificial constructs, "fuzzy" sets if you 
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like, in which the truth values of propositions are taken from a complete 
Boolean algebra. The "ordinary" universe then corresponds to the case of 
the trivial two-element Boolean algebra. It is more common, however, to 
take a supra-universal view of forcing, to think of forcing as an operation 
performed on one universe of set theory, the ground model, to produce 
another, the Cohen extension. 

A notion of forcing designed to construct a new set A typically consists 
of "conditions" giving partial information about A. The set P of condi
tions is partially ordered by extension, where p extends q if p gives more 
information about A than q (and p agrees with the information given by 
q). The set A is then equiconstructible with the set of all p e P giv
ing correct information about A. The latter set is called a generic set for 
P; it is a maximal consistent set of information satisfying certain other 
requirements as well. 

Although forcing is a child of mathematical logic its applications are 
remarkably logic-free. For example, the assertion that a combinatorial 
proposition holds in the Cohen extension generally translates into the as
sertion that the partial ordering of forcing conditions has some combina
torial property in the ground model, and this tends to be an accessible 
problem for a couple of reasons. First, one can choose the set of condi
tions. Properties that are difficult to check for one set may be quite easy for 
another. Second, one can choose the ground model. Gödel showed that if 
ZFC is consistent then so is ZFC together with the Axiom of Constructibil-
ity, which implies the Generalized Continuum Hypothesis (GCH). Thus 
without loss of generality one can assume that GCH holds in the ground 
model, so cardinal arithmetic is vastly simplified and combinatorial prop
erties are easier to check. Of course, as a library of additional propositions 
consistent with ZFC is accumulated, the number of potential ground mod
els is multiplied. The ground model for one notion of forcing may be the 
Cohen extension obtained from another. 

The most important corollary of the discovery of forcing has been the 
recasting of the goals of set theory. Once upon a time, that is to say before 
Cohen, the purpose of set theory was considered to be the investigation 
of the universe of all sets in the same sense that number theory is the 
investigation of the collection of all natural numbers. Unfortunately, many 
of the deepest and most interesting questions of set theory have turned out 
to be undecidable in ZFC. Now this in itself is not a problem, for we cannot 
expect ZFC to capture the whole truth about the universe of sets any more 
than the axioms of Peano Arithmetic capture the whole truth about the 
natural numbers. But propositions going beyond these axiomatic systems 
have got to be either true or false. GödePs famous sentence may not be 
provable but it is at least true. Among the natural elementary propositions 
of number theory known to be independent of Peano Arithmetic there is 
no doubt which ones are true—usually, it must be admitted, because they 
are provable in a stonger system like ZFC—but the situation is quite the 
opposite for the Continuum Hypothesis. There seem to be no intuitive 
grounds on which one can make a case for the truth or falsity of CH. 
Worse, the intuition is all on the side of forcing. When we force over a 
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model of CH to get a Cohen extension in which CH fails, and then force 
over that model to get a further extension in which CH is true again (just 
add a new set, a bijection between the reals and the countable ordinals) 
there is a clear and strong intuition that leads us to believe we see what is 
really going on. This is exactly the kind of intuition we would like to have 
about the truth or falsity of CH, but it is about independence instead. 

This yields a very strong temptation to convert set theory from an abso
lute enterprise like number theory to a relative enterprise like group theory. 
Perhaps "true" shouldn't mean "true in the universe of all sets" but rather 
"true in all models of ZFC" or "true in all universes" just as a theorem of 
group theory is a statement true of all groups. Perhaps we shouldn't be 
asking whether CH is true or false, but how it can be true or false. 

That leads to the problem of the classification of universes, with forc
ing as the tool for passing from one universe to another, and that is the 
view of set theory we get in Thomas Jech's book Multiple forcing, Jech 
is well known to students of set theory as the author of the standard ref
erence in the field [1], which already contains a thorough treatment of 
forcing. In this slender new book the focus is on forcing done more than 
once, for example forcing to adjoin many real numbers or forcing iterated 
transfinitely. 

There is a nice section on different ways to adjoin real numbers. One 
can find definitions and in most cases proofs of elementary properties of 
Cohen reals, Sacks reals, Prikry-Silver reals, Laver reals, Grigorieff reals 
and random reals (now, unfortunately, often called Solovay reals). To add 
enough reals to violate CH it is generally necessary to form the product 
of at least N2 copies of the partial ordering for adding one real and to 
endow the product with finite support, countable support, or some kind of 
mixed support in order to be sure that all cardinal numbers in the ground 
model remain cardinals in the Cohen extension. The intuition is that with 
product forcing the reals are added all at once, or "side by side," as opposed 
to being added one at a time, iteratively. The two constructions are quite 
different in general. In addition to the standard facts, the treatment of 
product forcing includes such gems as that adding two random reals (or 
two Laver or Mathias reals) side by side automatically adds a Cohen real, 
whereas this does not happen when the reals are added iteratively. This is 
quite possibly the only published reference dealing with all these forcing 
notions. 

Not surprisingly, iterated forcing is usually employed when it is neces
sary to handle many potential counterexamples one at a time. Consider, 
for example, the Borel Conjecture. A set A of real numbers has strong 
measure zero provided that for any sequence {en} of positive reals, there 
is a sequence {/„} of intervals so that /„ has length en for each n, and 
A ç (J^Lj h- The Borel Conjecture states that every set of strong measure 
zero must be countable. It is false under CH, and a fairly easy forcing 
argument shows that it is consistently false when CH fails. The problem is 
to show that it is consistently true. Given an uncountable set A of strong 
measure zero, the natural way to "kill" it is by adjoining a new sequence 
{en} of reals for which no corresponding sequence {/„} of intervals exists. 
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Unfortunately it is quite possible that adjoining the sequence {en} will in
advertently produce a new uncountable set of strong measure zero, which 
must then be killed separately, and so on. We are led to force iteratively, 
killing every counterexample we encounter. This raises two fundamental 
problems. First, will we ever finish? There has to be some point by which 
we have considered every possible counterexample. Second, is it possible 
that a counterexample killed by an earlier forcing may be brought back to 
life by a later one? The later forcing might accidentally produce a sequence 
{In} that satisfies the sequence {en} adjoined earlier. These two problems 
are typical of iterated forcing. 

Jech treats Laver's consistency proof for the Borel Conjecture, and in 
the same part of the book he discusses the Solovay-Woodin consistency 
proof for Kaplansky's conjecture and Shelah's argument for the Whitehead 
problem. Kaplansky's conjecture asserts that every homomorphism on 
C[0,1] into any commutative Banach algebra is continuous. Whitehead's 
question is whether every W -̂group is free, where a W-group is an infinite 
abelian group such that for every epimorphism n:B —• A with kernel Z 
there is a homomorphism (p:A-+ B such that n o <p is the identity. 

There is not room in 130 pages to give complete accounts even of these 
three problems, much less all the other topics found in this book. Jech's 
approach is to try to isolate those lemmas critical to the idea of the proof, 
and then to steer the reader to the literature for the rest of the details. I 
think this is rather effective; it will be particularly helpful for the student 
who knows some forcing but is intimidated by a literature that does not 
always make the important ideas clear. 

Shelah deduces a negative answer to Whitehead's question from a pow
erful proposition known as Martin's Axiom (MA). (Is MA true? Well, Jech 
shows how to make it true.) MA is an internal forcing axiom, i.e., the as
sertion that for a class C of partial orderings, every member of C possesses 
partially generic sets that are internal in the sense that they belong to the 
universe (the ground model, not some Cohen extension). For MA, C is 
the class of orderings with the countable chain condition. The last third 
of the book is mostly devoted to two more powerful cousins of MA, the 
Proper Forcing Axiom and Martin's Maximum (MM). Not only are the 
internal forcing axioms very powerful, they are also relatively easy to use. 
That makes them popular with many people, like set-theoretic topologists, 
who need the power of independence techniques without the aggravation 
of learning all the details. 

The consistency proof for MM, due to Foreman, Magidor and Shelah, 
is iterated forcing's finest hour. It brings together state-of-the-art iteration 
methods with large-cardinal arguments. The consequences of MM, like the 
fact that 2**° = N2 and that the nonstationary ideal onwi is N2-saturated, 
are simply stunning, and the implications of the methods used to prove it 
consistent are still being worked out. Like the other topics in this fine book, 
Jech's treatment of it is incomplete but concentrated on the important 
points. The reader who works all the way through this book, filling in the 
gaps, will have learned a great deal of set theory and will be left on the 
very edge of research. 
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While mathematics is certainly not a "science of measurement", math
ematicians do seek to "take the measure" of everything they study, often 
in the form of numerical, cardinal, or ordinal invariants—for example, to 
measure the deviation of a certain system from some ideal situation, to 
measure how likely or unlikely a certain object is to enjoy a certain prop
erty, or simply to measure the progress in some inductive procedure. Many 
such invariants have evolved, either directly or through analogy, from the 
Euclidean dimensions with which we measure our "real" world, and thus 
many invariants are called "dimensions" of some sort, usually decorated 
with one or more adjectives. Ring theory has its share of such dimen
sions, attached to both rings and modules, and since these dimensions 
have evolved in an algebraic rather than a geometric environment, their 
connection with Euclidean dimension may not be readily apparent. To il
lustrate, we discuss three examples—Goldie dimension, Krull dimension, 
and Gelfand-Kirillov dimension. 

Goldie dimension. Vector space dimension cannot be applied directly 
to arbitrary modules because most modules do not have bases, and even 
among those that do (namely the free modules), one can find modules in 
which different bases may have different cardinalities. The dimension of 
a vector space V can, however, be expressed as the number of terms in a 
decomposition of V into a direct sum of irreducible subspaces, or as the 
maximum number of terms occurring in decompositions of V into direct 
sums of nonzero subspaces. Since the complexity of a module need not 
be reflected by direct sum decompositions, one looks at decompositions 
of submodules along with decompositions of a given module. Thus the 
Goldie dimension (also called the uniform dimension, the uniform rank, 
or the Goldie rank) of a module M is defined to be the supremum of 
the number of nonzero terms in any direct sum decomposition of any 
submodule of M. 

This dimension arose in Goldie's 1958 development of noncommuta-
tive rings of fractions [3], since one necessary condition for a ring R to 
have a simple artinian ring of fractions Q is that the Goldie dimension of 
R (considered as a module over itself) be finite. More specifically, such 
a Q must be isomorphic (by the Artin-Wedderburn Theorem) to the ring 


