Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Symmetric decreasing rearrangement can be discontinuous


Authors: Frederick J. Almgren Jr. and Elliott H. Lieb
Journal: Bull. Amer. Math. Soc. 20 (1989), 177-180
MSC (1985): Primary 46E35; Secondary 26B99, 47B38
DOI: https://doi.org/10.1090/S0273-0979-1989-15754-6
MathSciNet review: 968686
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [AL] F. Almgren and E. Lieb, Symmetric decreasing rearrangement is sometimes continuous (submitted).
  • [CJ] J-M. Coron, The continuity of the rearrangement in W1,(R), Ann. Scuola Norm. Sup. Pisa Sér 4 11 (1984), 57-85. MR 752580
  • [KB] B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Math., vol. 1150, Springer-Verlag, Berlin and New York, 1985, 134 pp. MR 810619
  • [LE] E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), 349-374. MR 717827
  • [PS] G. Pólya and G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Studies no. 27, Princeton Univ. Press, Princeton, N. J., 1952. MR 43486
  • [RS] B. Ruf and S. Solimini, On a class of superlinear Sturm-Liouville problems with arbitrarily many solutions, SIAM J. Math. Anal. 17 (1986), 761-771. MR 846387

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 46E35, 26B99, 47B38

Retrieve articles in all journals with MSC (1985): 46E35, 26B99, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1989-15754-6

American Mathematical Society