Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF
Book Information:

Author: Tammo tom Dieck
Title: Transformation groups
Additional book information: Studies in Mathematics, vol. 8, Walter de Gruyter, Berlin, New York, 1987, x + 311 pp., $71.00. ISBN 0-89925-029-7.

References [Enhancements On Off] (What's this?)

  • 1. J. F. Adams, J.-P. Haeberly, S. Jackowski, and J. P. May, A generalization of the Segal conjecture, Topology 27 (1988), no. 1, 7–21. MR 935524, 10.1016/0040-9383(88)90003-1
  • 2. Glen E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46. MR 0413144
  • 3. Gunnar Carlsson, Equivariant stable homotopy and Segal’s Burnside ring conjecture, Ann. of Math. (2) 120 (1984), no. 2, 189–224. MR 763905, 10.2307/2006940
  • 4. G. Carlsson, Equivariant stable homotopy and Sullivan's conjecture, Preprint.
  • 5. Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. MR 551743
  • 6. J.-P. Haeberly, Some remarks on the Segal and Sullivan conjectures, Amer. J. Math. 110 (1988), no. 5, 833–847. MR 961497, 10.2307/2374695
  • 7. J. Lannes, Sur la cohomologie modulo 𝑝 des 𝑝-groupes abéliens élémentaires, Homotopy theory (Durham, 1985) London Math. Soc. Lecture Note Ser., vol. 117, Cambridge Univ. Press, Cambridge, 1987, pp. 97–116 (French). MR 932261
  • 8. L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482
  • 9. J. P. May, Review of Transformation groups and representation theory, by Tammo tom Dieck, Bull. Amer. Math. Soc. (N.S.) 4 (1981), 90-93.
  • 10. Haynes Miller, The Sullivan conjecture and homotopical representation theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 580–589. MR 934259
  • 11. R. Schultz (ed.), Group actions on manifolds, Contemp. Math. vol. 36, Amer. Math. Soc., Providence, R.I., 1985.
  • 12. R. W. Thomason, The homotopy limit problem, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, R.I., 1983, pp. 407–419. MR 711065
  • 13. Shmuel Weinberger, Constructions of group actions: a survey of some recent developments, Group actions on manifolds (Boulder, Colo., 1983) Contemp. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp. 269–298. MR 780967, 10.1090/conm/036/780967

Review Information:

Reviewer: J. Peter May
Journal: Bull. Amer. Math. Soc. 20 (1989), 267-270
DOI: http://dx.doi.org/10.1090/S0273-0979-1989-15792-3