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In the beginning (or shortly thereafter) there were complex projective 
surfaces. These algebraic subsets of Pn(C) of complex dimension 2 were 
extensively studied by Italian geometers, such as Castelnuovo, Enriques, 
and Severi, during the late nineteenth and early twentieth century. It soon 
became apparent that the key to understanding such surfaces is to study 
the curves which they contain. Thus if X c PW(C) is a smooth surface, 
one looks at the curves C c X\ and, more generally, one looks at the 
free abelian group generated by these curves, which is called the group 
of divisors on X and is denoted 

Div(AT) = I ^2 nc[C]: nc e Z, almost all nc = 0 \ . 
iccx J 

Associated to a rational function ƒ on X is its set of zeros and poles; 
taken with multiplicities, these zeros and poles give a divisor. Two divisors 
D\,Di G Div(Ar) are called linearly equivalent if their difference D\ - Di 
is the divisor of a function. 

Given two distinct curves C\ and Ci on X, one can count the number 
of points where they intersect (with multiplicity, if the intersection is not 
transversal). Extending this intersection index linearly to Div(X) gives the 
intersection pairing 

( , ) : Div(Z) x Div(X) -+ Z, 
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defined a priori for divisors with no common components. An impor
tant property of the intersection pairing is that it is invariant under linear 
equivalence. (I.e. If D\ is linearly equivalent to D2, then (D,D\) = (A A ) 
for all D e Div(X).) This allows one to move a divisor, and so to define 
(A, D2) for all pairs of divisors. Virtually all of the major theorems in the 
classical theory, such as the Riemann-Roch theorem, Hodge index theo
rem, Castelnuovo's criterion, and Noether's formula, involve divisors and 
their intersections. (See, for example, [9, Chapter 4 or 10, Chapter 5].) 

A Fibered Surface 

FIGURE 1 

One way to study the curves on a smooth surface is by looking at the 
fibers of a map 0 : X —• P1; or more generally, of a map </> : X —• S 
to an arbitrary curve S. For all but finitely many points s e S, the fiber 
Xs = (t>~l(s) will be a single smooth curve; and there will be some finite 
set of points {s\,... ,sr} whose fibers Xs. consist of one or more possibly 
singular curves. This fibration divides the curves on X into two sorts, 
those which are fibral and those for which the map (j) : C —• S is a finite 
covering. (See Figure 1.) 

During the 1960s Grothendieck suggested studying fibrations <j> : X —> S, 
where S is no longer an algebraic variety. For example, let S = Spec(Z), 
the set of prime ideals in Z. Then X is given by the zeros of a collection 
of polynomial equations with integer coefficients; and for a point s = 
(p) G 5, the "fiber" Xs consists of the same equations reduced modulo 
p. For example, suppose that X is the subset of P2 given by the single 
homogeneous equation 

^ : x 3 + y 2 z + z3 = 0. 

The complex solutions to this equation, denoted XQO(C), give a smooth, 
projective curve of genus 1 (a so-called "elliptic curve"). The fiber of 
0 : X -> S lying over the point s = (p) is a curve over the finite field F/. 

Xs = {[x,y, z] e P2(FP) : x3 + y2z + z3 = 0}. 
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Then Xs is a singular curve if p = 2 or 3, and a smooth curve for all other 
primes. If ^ ( C ) is a curve, as in this example, then one says that X is 
an arithmetic surface.1 

Since an arithmetic surface X is supposed to be an analogue of the 
geometric surfaces described above, one can ask to study the "curves" on 
X and to develop an intersection theory. There are again two sorts of 
curves on X. First, there are the fibers Xs (and their components, if Xs is 
reducible). Second, there are the horizontal curves C c X, those for which 
the map </> : C —• S is a finite covering. If this map has degree d, then 
the curve C corresponds to a point on X whose coefficients lie in a field 
of degree d over Q. Thus classical Diophantine questions about rational 
points on curves (e.g. MordelFs conjecture) have a natural interpretation 
in terms of curves on arithmetic surfaces. 

Next one tries to calculate the intersection of curves on an arithmetic 
surface. For distinct horizontal curves, the classical definition using local 
intersection indices essentially works. Lichtenbaum and Shafarevich have 
shown that some classical theorems, such as Castelnuovo's criterion on 
contractibility of exceptional divisors and certain embedding theorems, 
can then be generalized. (See [6, 13, 14].) 

However, most of the classical theory depends on the fact that the inter
section pairing is invariant under linear equivalence. And the underlying 
reason that this is true is that the surface X is complete (i.e. compact). 
Unfortunately, an arithmetic surface X —• S is not "compact." The base 
curve S — Spec(Z) is the analogue of the affine line A1, not the projective 
line P1. So X is not complete because it is missing a fiber "at infinity." 
Arakelov observed that since the points of Spec(Z) correspond to the p-
adic absolute values on Z, the missing point of Spec(Z) should correspond 
to the usual absolute value (i.e. the one induced by Z c R). Call this extra 
point oo, and write S* = Spec*(Z) for Spec(Z) U {oo}. Then the fiber Xoo 
is just the complex curve X^C); and with this extra fiber, the arithmetic 
surface I * = I u X ^ is complete. 

This idea of considering all absolute values on Z is a number theoretic 
technique which dates back to the late nineteenth century, and it has been 
extensively used ever since. Arakelov's great insight was to suggest how 
to "complete" the intersection theory at infinity. In brief, his idea is as 
follows. The problem is to calculate to what extent two horizontal curves 
C\, C2 C X intersect on the fiber at infinity. These curves correspond to 
points P\,P2 in XQO(C), SO intuitively one wants 

(Ci, C2)00 = -log(distance from Px to P2 on ^ ( C ) ) . 

(Note that for finite primes p, the intersection (C\,C2)P corresponds to 
the p-adic distance.) Arakelov takes a certain normalized, logarithmic 

1 Note for experts: Many of the definitions and theorems quoted in this review are only 
approximately correct. For example, an arithmetic surface (as defined in Lang) is integral, 
proper over its Dedekind domain base, and has smooth generic fiber. I have sacrificed the 
rigor of such definitions in favor of brevity and clarity suitable to a review. I have also 
generally ignored the important issues of regularity and semistability, which Lang (rightly) 
treats in some detail. 
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Green's function g(P, Q) on the Riemann surface X(C). This is a real 
analytic function on X(C) x X(C) with a logarithmic singularity along the 
diagonal. He then defines 

(Cl9C2)oo = g(Pl,P2). 
With this extra contribution to the intersection index, Arakelov shows 
that the intersection pairing is invariant under linear equivalence. He 
then proves (under certain restrictions) an arithmetic adjunction formula, 
which relates the self-intersection (D,D) to the intersection (D,KX) of D 
with an arithmetic canonical divisor Kx. (See [2, 3, 5].) 

Two of the most fundamental theorems in the classical theory of al
gebraic surfaces are the Riemann-Roch Theorem and the Hodge Index 
Theorem. The Riemann-Roch Theorem expresses the dimension of cer
tain cohomology groups in terms of intersection theory. Precisely, define 
the Euler characteristic of a divisor by 

X(D) =: dimH°(X,^x(D)) - dimH{(X,&x(D)) + dimH2(X,&x(D)). 

Then the Riemann-Roch Theorem says 

(1) x(D)-x(0) = ±(D9D-Kx). 

Thus the Riemann-Roch theorem expresses the size of certain cohomology 
groups in terms of an intersection index. Faltings' arithmetic version of 
Riemann-Roch is similar. He defines a volume form on the vector spaces 
H*(X,(?x(D)) ® C (really on a certain alternating tensor product). Then 
the volume of a fundamental domain for the lattice WiX^xiP)) inside 
H^Xi&xiD)) 0 C measures how large H^X^xiD)) is. Faltings shows 
that an Euler characteristic defined with these volumes can be expressed 
in terms of Arakelov intersections. In fact, his formula looks exactly like 
(1). Faltings (and Hriljac independently) also gave proofs of an arithmetic 
analogue of the Hodge Index Theorem. 

After this lengthy prologue, we come to the book under review. In a 
brief 154 pages of text, Lang has covered most of the material discussed 
above and more. He begins (Chapter I) with a discussion of "line sheaves" 
(his term for invertible sheaves) and metrics on them. This chapter will 
be easiest for those who have read his discussion of Weil functions and 
Néron divisors in [12, Chapter 10]. He next (Chapter II) gives the (tech
nical) construction of the Green's functions needed for the definition of 
Arakelov's intersection theory. This is purely analytic, and the reader will
ing to accept the existence of these functions can just read the statements 
of the theorems in this chapter. The author continues (Chapter III) with an 
exposition of intersection theory on an arithmetic surface X —• Spec(i^), 
as developed by Lichtenbaum [13], Shafarevich [14], and Néron [12, Chap
ter 11, §3]. This is the pre-Arakelov intersection theory which lacks the 
fiber(s) at infinity. 

The infinite fiber(s) are added next (Chapter V), and the invariance of 
the Arakelov intersection pairing under linear equivalence is proven. The 
arithmetic Hodge Index Theorem is proven as a consequence of the posi
tive definiteness of the Néron-Tate height, for which the reader is referred 
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to [12]. The canonical bundle is constructed and metrized, and the residue 
theorem is proven (with reference to [11] for some details). The chapter 
concludes with a proof of Arakelov's arithmetic adjunction formula. This 
proof is notable for the fact that it works directly on the arithmetic surface 
X\ it neither requires semistability, nor does it make a base extension to 
reduce to this case. The last two chapters (Chapters V and VI) contain the 
proof of Faltings' arithmetic Riemann-Roch Theorem, again given without 
the use of semistability assumptions, and some applications of Faltings' 
theorem. The hardest part of the proof is showing that it is possible to 
assign volume forms (Faltings metric) to the determinants of certain coho-
mology groups in a consistent fashion. This result is stated in Chapter V, 
and the proof occupies most of Chapter VI. Granting the existence of the 
Faltings metric, the proof of the Riemann-Roch Theorem is similar to the 
classical case; one works inductively, adding one irreducible component at 
a time to the divisor. Chapter VI contains generalities on determinants of 
derived sheaves, a proof of the existence of the Faltings metric (modulo 
some standard facts on the 6-divisor that can be found in [4]), and a result 
of Elkies bounding certain averages of a Green's function. 

In a short appendix, Paul Vojta describes Parshin's (conjectural) arith
metic analogue of the famous c\ < 2>ci inequality for complex algebraic 
surfaces, relates Parshin's question to some of his own conjectures [15], 
and gives various Diophantine applications. 

This briefly describes what is in Lang's book. Some related topics that 
were not included are: Faltings' arithmetic analogue of Noether's formula, 
recent progress on higher dimensional arithmetic intersection theory due 
to Gillet and Soulé, Deligne, Quillen, and others; applications of arith
metic intersection theory to physics; Vojta's recent independent proof of 
Mordell's conjecture (Faltings' theorem) using (among other tools) the 
Riemann-Roch Theorem on arithmetic three-folds. These advanced topics 
would make a nice companion volume. 

Many of the proofs in Lang's book are really closer to proof sketches, ei
ther leaving details for the reader to check, or referring to other sources for 
major pieces of the proof. Lang makes frequent use of material proven in 
Hartshorne [10, especially Chapters II and III], Griffiths-Harris [9, Chap
ter 0], Altman-Kleinman [1], and his own book on Diophantine geometry 
[12]. Other sources are occasionally cited. This is clearly a compromise 
needed to enable him to cover so large an amount of material in so few 
pages. But it will put a strain on the reader not having the "rather vast 
background required for its reading."2 It would certainly be useful to have 
a book of 400 or 500 pages on the same material, containing many more 
details, examples, and exercises. Such a book would "coexist amicably" 
with Lang's, and "neither would be better than the other." (One would be 
better for students, the other for mathematicians already having the nec
essary background.) But until someone makes the major effort necessary 

2This quote and those following are taken (slightly out of context) from a letter written 
by Lang to Mordell concerning the first edition of [12] and published in an appendix to the 
second edition. 
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to write such a text, Lang's book is sure to be the standard reference for 
the basic material in this important and active area of research. 

Finally, the obligatory comments on errors, typos, etc. The typesetting 
is nicely done, and I found only a few minor glitches (e.g. "variables" in 
place of "variable" on p. 11, "models" in place of "modules" on p. 106). 
One should also note a possible source of confusion concerning the im
portant theorem giving the existence of the Faltings metric. This is stated 
as Theorem 3.2 of Chapter V, where the Faltings metric is described as 
having four properties FAL1, ... ,FAL4. The proof is deferred to Chap
ter VI, where the theorem is restated as Theorem 3.1. But now there are 
only three properties FAL1, ...,FAL3! One easily checks that Lang has 
combined the old properties FAL2 and FAL4 into the new FAL2. 

In conclusion, Lang has written a valuable introduction to the basic 
theory in this new and important area of arithmetic geometry. Much of 
the material he covers was previously available only in the original journal 
articles, and he is to be commended for bringing it together in such a 
coherent fashion. It will undoubtedly become a standard reference, and 
certainly belongs on the bookshelf of any serious mathematician working 
in arithmetic algebraic geometry or the theory of Diophantine equations. 
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