Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF
Book Information:

Author: Hari Bercovici
Title: $H^\infty$ Operator theory and arithmetic in
Additional book information: Mathematical Surveys and Monographs, No. 26, American Mathematical Society, Providence, R.I., 1988, xii + 275 pp., $67.00. ISBN 0-8218-1528-8.

References [Enhancements On Off] (What's this?)

  • 1. Douglas N. Clark, One dimensional perturbations of restricted shifts, J. Analyse Math. 25 (1972), 169–191. MR 0301534
  • 2. Kenneth R. Davidson and Domingo A. Herrero, The Jordan form of a bitriangular operator, J. Funct. Anal. 94 (1990), no. 1, 27–73. MR 1077544, 10.1016/0022-1236(90)90027-I
  • 3. L. J. Gray, Jordan representation for a class of nilpotent operators, Indiana Univ. Math. J. 26 (1977), no. 1, 57–64. MR 0425653
  • 4. Béla Sz.-Nagy and Ciprian Foiaş, Sur les contractions de l’espace de Hilbert. VII. Triangulations canoniques. Fonction minimum, Acta Sci. Math. (Szeged) 25 (1964), 12–37 (French). MR 0170216
  • 5. Béla Sz.-Nagy and Ciprian Foiaș, Harmonic analysis of operators on Hilbert space, Translated from the French and revised, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. MR 0275190
  • 6. Béla Sz.-Nagy, Unitary dilations of Hilbert space operators and related topics, American Mathematical Society, Providence, R.I., 1974. Expository Lectures from the CBMS Regional Conference held at the University of New Hampshire, Durham, N.H., June 7-11, 1971; Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 19. MR 0482291
  • 7. L. R. Williams, A quasisimilarity model for algebraic operators, Acta Sci. Math. (Szeged) 40 (1978), no. 1-2, 185–188. MR 0500226

Review Information:

Reviewer: Pei Yuan Wu
Journal: Bull. Amer. Math. Soc. 21 (1989), 184-186