Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Yuri I. Manin
Title: Gauge field theory and complex geometry
Additional book information: Translated from the Russian by N. Koblitz and J. R. King, Springer-Verlag, Berlin, Heidelberg, 1988, x + 295 pp., $80.00. ISBN 0387-18275-6.

References [Enhancements On Off] (What's this?)

  • 1. M. F. Atiyah, N. J. Hitchin, V. G. Drinfel′d, and Yu. I. Manin, Construction of instantons, Phys. Lett. A 65 (1978), no. 3, 185–187. MR 598562, https://doi.org/10.1016/0375-9601(78)90141-X
  • 2. R. J. Baston and L. J. Mason, Conformal gravity, the Einstein equations and spaces of complex null geodesics, Classical Quantum Gravity 4 (1987), no. 4, 815–826. MR 895903
  • 3. F. Berezin and D. Leites, Supermanifolds, Soviet Math. Dokl. 16 (1975), 1218-1221. MR 402795
  • 4. Simon K. Donaldson, The geometry of 4-manifolds, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 43–54. MR 934214
  • 5. M. Green, J. Schwarz, and E. Witten, Superstring theory, Cambridge Univ. Press, 1987.
  • 6. J. Isenberg, P. Yasskin, and P. Green, Non-self-dual gauge fields, Phys. Lett. 78B (1978), 462-464.
  • 7. B. Kostant, Graded manifolds, graded Lie theory, and prequantization, Differential Geometric Methods in Mathematicas Physics, Lecture Notes in Math., vol. 570, Springer-Verlag, Berlin and New York, 1977. MR 580292
  • 8. Claude LeBrun, Thickenings and gauge fields, Classical Quantum Gravity 3 (1986), no. 6, 1039–1059. MR 868717
  • 9. Claude LeBrun, Thickenings and conformal gravity, Comm. Math. Phys. 139 (1991), no. 1, 1–43. MR 1116408
  • 10. Claude LeBrun and Mitchell Rothstein, Moduli of super Riemann surfaces, Comm. Math. Phys. 117 (1988), no. 1, 159–176. MR 946998
  • 11. Y. Manin, Critical dimensions of string theories and the dualizing sheaf on the moduli space of (super) curves, Funct. Anal. Appl. 20 (1987), 244-245.
  • 12. Roger Penrose and Wolfgang Rindler, Spinors and space-time. Vol. 2, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1986. Spinor and twistor methods in space-time geometry. MR 838301
  • 13. R. Ward, On self-dual gauge fields, Phys. Lett. 61A (1977), 81-82. MR 443823
  • 14. E. Witten, An interpretation of classical Yang-Mills theory, Phys. Lett. 77NB (1978), 394-398.
  • 15. Edward Witten, Twistor-like transform in ten dimensions, Nuclear Phys. B 266 (1986), no. 2, 245–264. MR 829140, https://doi.org/10.1016/0550-3213(86)90090-8
  • 16. E. Witten, Physics and geometry, Proc. Internat. Congr. Math., Berkeley, 1986, pp. 267-302, Amer. Math. Soc., Providence, R. I., 1987.

Review Information:

Reviewer: Claude Lebrun
Journal: Bull. Amer. Math. Soc. 21 (1989), 192-196
DOI: https://doi.org/10.1090/S0273-0979-1989-15816-3
American Mathematical Society