Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: K. R. Goodearl
Title: Partially ordered abelian groups with interpolation
Additional book information: Mathematical Surveys and Monographs, number 20, American Mathematical Society, Providence, R.I., 1986, xxii + 336 pp., ISBN 0-8218-1520-2.

References [Enhancements On Off] (What's this?)

  • 1. G. Birkhoff, Lattice-ordered groups, Ann. of Math. (2) 43 (1942), 298-331. MR 6550
  • 2. O. Bratteli, G. A. Elliott, and A. Kishimoto, The temperature state space of a C*-dynamical system. II, Ann. of Math. (2) 123 (1986), 205-263. MR 835762
  • 3. A. Connes, Non commutative differential geometry, Proceedings of Arbeitstagung 1987 (F. Hirzebruch, ed. ), Max Planck Institute, Univ. of Bonn.
  • 4. J. Cuntz and W. Krieger, Topological Markov chains with dicyclic dimension groups, J. Reine Angew. Math. 320 (1980), 44-51. MR 592141
  • 5. E. G. Effros, Dimensions and C*-algebras, CBMS Regional Conf. Ser. in Math., No. 46, Amer. Math. Soc., Providence, R. I., 1981. MR 623762
  • 6. E. G. Effros, D. E. Handelman, and C.-L. Shen, Dimension groups and their affine representations, Amer. J. Math. 102 (1980), 385-407. MR 564479
  • 7. E. G. Effros and C.-L. Shen, Approximately finite C*-algebras and continued fractions, Indiana Univ. Math. J. 29 (1980), 191-204. MR 563206
  • 8. G. A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38 (1976), 29-44. MR 397420
  • 9. G. A. Elliott, A property of totally ordered groups, C. R. Math. Rep. Acad. Sci. Canada 1 (1979), 63-66. MR 519524
  • 10. G. A. Elliott, On totally ordered groups, and K0, Ring Theory, Waterloo, 1978 (D. Handelman and J. Lawrence, eds. ), Lecture Notes in Math., vol. 734, Springer-Verlag, Berlin and New York, 1979, pp. 1-49. MR 548122
  • 11. L. Fuchs, Riesz groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19 (1965), 1-34. MR 180609
  • 12. D. E. Handelman, Positive polynomials, convex integral polytopes, and a random walk problem, Lecture Notes in Math., vol. 1282, Springer-Verlag, Berlin and New York, 1987. MR 914972
  • 13. V. F. R. Jones, Braid groups, Hecke algebras and type II, Geometric Methods in Operator Algebras (H. Araki and E. G. Effros, eds. ), Longman, London, 1986, pp. 242-273. MR 866500
  • 14. A. Lazar and J. Lindenstrauss, Banach spaces whose duals are L, Acta Math. 126 (1971), 165-193. MR 291771
  • 15. D. Mundici, Farey stellar subdivisions, ultrasimplicial groups, and K, Adv. in Math. 68 (1988), 23-39. MR 931170
  • 16. A. Ocneanu, Quantized groups, string algebras, and Galois theory for algebras, preprint. MR 996454
  • 17. M. Pimsner and D. Voiculescu, Imbedding the irrational rotation C*-algebra into an AF-algebra, J. Operator Theory 4 (1980), 201-210. MR 595412
  • 18. J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math., vol. 793, Springer-Verlag, Berlin and New York, 1980. MR 584266
  • 19. F. Riesz, Sur quelques notions fondamentales dans la théorie générale des opérations linéaires, Ann. of Math. (2) 41 (1940), 174-206. MR 902
  • 20. C.-L. Shen, On the classification of the ordered groups associated with the approximately finite-dimensional C*-algebras, Duke Math. J. 46 (1979), 613-633. MR 544249
  • 21. A. M. Vershik and S. V. Kerov, Locally semisimple algebras, combinatorial theory, and the K, J. Soviet Math. 38 (1987), 1701- 1733.

Review Information:

Reviewer: George A. Elliott
Journal: Bull. Amer. Math. Soc. 21 (1989), 200-204
DOI: https://doi.org/10.1090/S0273-0979-1989-15822-9
American Mathematical Society