Amenable group actions on the integers; an independence result
Author:
Matthew Foreman
Journal:
Bull. Amer. Math. Soc. 21 (1989), 237240
MSC (1985):
Primary 38D35, 60B99; Secondary 43A07
DOI:
https://doi.org/10.1090/S027309791989158151
MathSciNet review:
998197
Fulltext PDF
References  Similar Articles  Additional Information

[B] S. Banach, Sur le problème de la mesure, Fund. Math. 4 (1923), 733.

[BL] J. Baumgartner and R. Laver, Iterated perfect set forcing, Annals of Math. Logic 17 (1979), 271288. MR 556894

[C] C. Chou, The exact cardinality of the set of invariant means on a group, Proc. Amer. Math. Soc. (1976), 103106. MR 394036

[D] V. G. Drinfield, Solution of the BanachRuziewicz problem on S, Functional Anal. Appl. 18 (1984), 7778.

[K] S. Krasa, Nonuniqueness of invariant means for amenable group actions, Monatsh. Math. 100 (1985), 121125. MR 809116

[Ku] K. Kunen, Set Theory: an introduction to independence proofs, Elsevier, NorthHolland, 1980, New York. MR 597342

[M] R. Mckenzie, private correspondence.

[M1] G. Margulis, Some remarks on invariant means, Monatsh. Math. 90 (1980), 233235. MR 596890

[M2] G. Margulis, Finitely additive invariant measures on Euclidean spaces, J. Ergodic Theory and Dynamical Systems 2 no. 3 (1982), 383396. MR 721730

[RT] J. Rosenblatt and M. Talagrand, Differential types of invariant means, J. London Math. Soc. 24 (1981), 525532. MR 635883

[S] D. Sullivan, For n > 3, there is only one finitely additive rotationally invariant measure on the nsphere defined on all Lebesgue measurable sets, Bull. Amer. Math. Soc. (N.S.) 4 (1981), 121123. MR 590825

[Y] Z. Yang, Action of amenable groups and uniqueness of invariant means (to appear). MR 1105654
Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 38D35, 60B99, 43A07
Retrieve articles in all journals with MSC (1985): 38D35, 60B99, 43A07
Additional Information
DOI:
https://doi.org/10.1090/S027309791989158151