Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

An ergodic theorem for constrained sequences of functions


Author: John C. Kieffer
Journal: Bull. Amer. Math. Soc. 21 (1989), 249-254
MSC (1985): Primary 28D99; Secondary 60G10, 94A15
MathSciNet review: 998629
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. Blahut, Principles and practice of information theory, Addison-Wesley, Reading, Mass., 1987.
  • 2. Leo Breiman, The individual ergodic theorem of information theory, Ann. Math. Statist. 28 (1957), 809–811. MR 0092710
  • 3. I. Csiszár, J. Körner, L. Lovász, K. Marton, and G. Simonyi, Entropy splitting for antiblocking pairs and perfect graphs (submitted).
  • 4. J. F. C. Kingman, The ergodic theory of subadditive stochastic processes, J. Roy. Statist. Soc. Ser. B 30 (1968), 499–510. MR 0254907
  • 5. Donald Ornstein and Benjamin Weiss, The Shannon-McMillan-Breiman theorem for a class of amenable groups, Israel J. Math. 44 (1983), no. 1, 53–60. MR 693654, 10.1007/BF02763171
  • 6. Paul C. Shields, The ergodic and entropy theorems revisited, IEEE Trans. Inform. Theory 33 (1987), no. 2, 263–266. MR 880168, 10.1109/TIT.1987.1057287

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 28D99, 60G10, 94A15

Retrieve articles in all journals with MSC (1985): 28D99, 60G10, 94A15


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1989-15821-7