Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

An ergodic theorem for constrained sequences of functions


Author: John C. Kieffer
Journal: Bull. Amer. Math. Soc. 21 (1989), 249-254
MSC (1985): Primary 28D99; Secondary 60G10, 94A15
DOI: https://doi.org/10.1090/S0273-0979-1989-15821-7
MathSciNet review: 998629
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. Blahut, Principles and practice of information theory, Addison-Wesley, Reading, Mass., 1987.
  • 2. L. Breiman, The individual ergodic theorem of information theory, Ann. Math. Statist. 28 (1957), 809-811. MR 92710
  • 3. I. Csiszár, J. Körner, L. Lovász, K. Marton, and G. Simonyi, Entropy splitting for antiblocking pairs and perfect graphs (submitted).
  • 4. J. Kingman, The ergodic theory of subadditive stochastic processes, J. Roy. Statist. Soc. Ser.B 30 (1968), 499-510. MR 254907
  • 5. D. Ornstein and B. Weiss, The Shannon-McMillan-Breiman Theorem for a class of amenable groups, Israel J. Math. 44 (1983), 53-60. MR 693654
  • 6. P. Shields, The ergodic and entropy theorems revisited, IEEE Trans. Inform. Theory IT-33 (1987), 263-266. MR 880168

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 28D99, 60G10, 94A15

Retrieve articles in all journals with MSC (1985): 28D99, 60G10, 94A15


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1989-15821-7

American Mathematical Society